Phlux.rs

Monte Carlo N-Particle Transport Framework

SoHo Labs

January 2026

Phlux Book

Contents

I 0 0) o 4
1.1 Workspace BreakdOwWI 4
1.2 QUICK LnKS ..o e e 4

12,1 DEIMIOS . .ot e 4
1.2.2 RESOUTCES . . ettt ettt e e e e e e e e e e e e e e e e 4
1.3 NOBATION .« et e 4
1.3.1 General Tensor NOtAtION e e e e e e e e 4

2 Phlux: Transport Theory ...t iitiiiiiitiiiiiiiiiiiiiiittttttiiteteeeansteeeeeassseeeeenssseeeennnnnns 5

2.1 Transport as a Stochastic Process e 5
2.1.1 Particles and Events: Structures-0f-ATTaySo e 6
2.2 The Transport OPeratorottt ettt et e e e e e 6
2.2.1 Cell TdentifiCationttt et e 7
2.2.2 Homogenizationo. i e 7
2.2.3 Batched Particle Castingt e e 7
2.2.4 Progeny SAMPLNGo e 8
2.3 The Storage Backendo e 9
2.3.1 Data Flow ... e 9
2.3.2 TablEeStOTAZE - .ottt et e 9
2.3.3 GraphStOTaZE - .ottt et e e e 9
2.4 ObSErVAbDIes .o 10
2.4.1 The Observable Integral e e e 10
2.4.2 The Observable Pipeline e 10
2.4.3 MEASUTEINENES . . . oo\ttt ettt ettt e e e et et e e e e e e e 11
244 IS . oottt 11
2.4.5 Response FUNCHIONSt e et e e e e 12
2.4.6 The Frame AP ... e 12
2.4.7 Canonical ODbServables e e 13
2.5 Transport as a Genealogyt 16
2.5.1 A Genealogical View on Criticality e e e 16
3.1 Scalar FIeldso 17
3.1.1 Batch Evaluation 22
3 2 REIOMS .o 22
3.2.1 Constructive Solid GEOIMEITYttt e e ettt e 24
3.2, 2 PriIitives . .ottt e e e e e 29
3.3 Transformations e 30
3.3.1 Translation e 30
3312 AL . .ottt 30
3.3.3 ROTatION - oo e 32
3.3.4 Non-standard Transformations e e 33
3.4 Ray Casting . ..ottt 35
3.4.1 Analytical Method e e 35
3.4.2 Bracket and Bisect Algorithm 39
3.4.3 Newton’s Method e e e e e e e 41
3.5 Analysis MOdULES 42
3.5.1 Volume Estimation (Monte Carlo)oueite i e e 42
3.5.2 Gradient CompPUBatiONttt e e e e 43
3.5.3 Gradient DesCent e 44
3.5.4 Root Finding (Newton’s Method)o. i e 45
3.5.5 Adaptive BOUNAINGouit i e e 45
3.6 Mesh EXTTactiont e e e e e e e e 47
3.6.1 Simplicial ComPLEXESottt e e e e 47
3.6.2 The Marching Algorithin o e e e e 47

Phlux Book

3.6.3 Hypercube ClassifiCationt e e 48

3.6.4 Edge Interpolation e 49

3.6.5 RESOIULION .. oot 49

3.6.6 ALGOTTtIINS . . .o e 51

3.7 Rescaling Transformationso e 52
3.7.1 FUNCEION CLASSES . . .o vttt ettt e ettt e e e e e e e 52

3.7.2 Properties of ReSCaAliNg e 52

3.7.3 Rescaling for Ray Cast Stability e 52

4 XS: Nuclear Cross SecCtion ServiCe ... tiiiitiiiiteiteiieeeeeeeeneessoesossosenssassosssssassassnssnssas 54
5 Rott: Row-Oriented Tensor Types ...ttt tiiiiittttiiiieeeeiisneeeerssseeeennsseeeennnnns 55
5.1 Row-Oriented Tensor Type (ROTT) ...ttt e e e e e e 55
5.2 Operations on ROTTS ... et e e 56
5.2.1 Predicate NOtAtION e e 56

0.2, SOt Lot 56

0.2, MASK WNET e 57

0,204 S AL ettt 58

53005 T o =To T 1Y P 59

D.2.0 CONCAL Lottt 60

5.2.7 CONCAt_DOUNAEA . ..ottt 61

0.2.8 Partition UNL oM (e e 61

5.2.9 partition by Labels ... 62

5.3 The ROtES SUIUCE - . ..ot et e et e e e e e e 63
530S TR 11T o AP 64

S 20 T I Y PP 64

6 Roam: Discrete Stochastic Processesottt ittt ittt ittt iiiiieeiinieeeennns 66
6.1 SEOChASEIC PrOCESSES . ..\ttt e 66
6.2 The Stepper TIAILttt et ettt e e e e e 66
6.3 Trajectories 66
6.4 Basic Markov ExXamples e 67
6.4.1 The Trivial StepDero e e e 67

6.4.2 A COUNBING SEEPPET . ..ottt e ettt e e e e e e e 68

6.4.3 Closure-Based StEPDETSt e 69

6.4.4 Geometric Brownian MOtIOn 69

6.5 Basic Non-Markov ExXamples 71
6.5.1 POlya Urni Modelt e 71

6.6 Tensor States: The Ising Model 73
6.6.1 Standard Ising Model (IMArkov)t e e e 73

6.6.2 Magnetic Memory Ising (Non-Markov) e 77

6.7 Error-Based Terminationouuoonti ettt et et ettt et et e e e 79

I o 61 R 5 G VA T PPN 79
7.1 Loading .phlux Files e e e e e e 79
7.2 User INterfaceo e 80
7.3 Filter Bifurcation o et e 81

LT N 0 0 138 Lo 1< 82
S 071 o) 82
8.2 CONBIIDULING . . .ottt et e 82
8.2. 1 QUICK SUaIt .ottt 82

8.2.2 Commit Message FOrmat 82

8.2.3 Development Workflow o 82

8.2.4 Getting Help . ..o 82

1 Foreword

Phlux Book

1.1 Workspace Breakdown

Crate Description
phlux Monte Carlo Particle Transport

Constructive Solid Geometry

XS Nuclear Cross Section Service
rott Row-Oriented Tensor Types
roam Discrete Stochastic Processes

1.2 Quick Links

1.

2.1 Demos

[TBD - Coming soon]

1.

2.2 Resources
Repository
Documentation
Demo Site

Issue Tracker

1.3 Notation

1.

3.1 General Tensor Notation

This workspace employs tensor notation throughout. Almost every tensor encountered in this book is of rank < 2. Colloquially,
these are classic scalars, vectors and matrices.

Objects with no indices are scalar-valued. (e.g. A, f: R” — R)

Objects with one or more indices are tensor-valued. (e.g. z*, X, F*(X%) : R™" — R™)

Rank-1 tensors (vectors) are represented in lower-case, rank-r where r > 1 tensors use upper-case. (e.g. 7, X%)

Tensor operations use Einstein summation notation, eliding the summation symbol (e.g. 2’z ; = Zj zix;)

Element-wise or broadcasted multiplication is indicated by juxtaposition (e.g. 'y?). Shared indices indicate broadcasted
multiplication (e.g. X¥y® is the action of multiplying the i-th row of X% by the i-th element of y*).

When used, the spatial dimension is indexed by j, and the batch dimension is indexed by i. (e.g. 27, X%)

https://gitlab.com/soho-labs/phlux.rs
https://soho-labs.gitlab.io/phlux.rs/
https://phlux.site
https://gitlab.com/soho-labs/phlux.rs/-/issues

Phlux Book

2 Phlux: Transport Theory

Particle transport can be formulated as a discrete stochastic process, where the system state evolves through random
interactions with geometry and materials. The phlux crate builds on the roam framework (see the Roam chapter for background
on discrete stochastic processes) to implement Monte Carlo particle transport.

2.1 Transport as a Stochastic Process

Particle transport is a discrete Markov process. Over this chapter we will formulate N-particle transport using the abstractions
provided by roam.rs (discrete stochastic processes) and rott.rs (row-oriented tensor types).

To begin, consider the history of a single particle. Below are a number of example histories, all beginning from a single source
at depth d = 0. For now, this initial particle is a neutron.

In these history diagrams, solid black lines indicate particles traveling through space-time. Each kink in the particle trajectory
represents a concrete interaction between the particle and a nucleus, or some non-physical part of the system, such as a
material boundary. These are called events, and they are colored by type (fission, scattering, etc.). Particle types (neutron,
photon, etc.) are identified by the shape of the line, bearing resemblance to Feynmann diagrams.

|
/N .
AN

d=3
d=4
d=5
d=6

(a) Supercritical (b) Reflective (c) Absorptive (d) Transmissive (e) Diverse

Figure 1: Contrived particle histories over time as depth increases.

In example (a), our neutron collides with a fissile nucleus, generating 3 daughter progeny nucleus via fission. This chain
reaction continues, and progeny neutrons induce subsequent fission events at d = 2. This is a highly supercritical system:;
the neutron population increases exponentially with depth.

In (b), the neturon population is a constant; our source particle scatters elastically, inducing the creation of no additional
progeny beyond itself. This history may represent a particle in a vaccuum encased by a perfectly reflective box.

Example (c¢) is trivial. The neutron is absorbed at its first collision.

Example (d) depicts a particle repeatedly transmitting between cells (uniform volumes of material) without interaction. This
is non-physical; the particle experiences no change in state throughout the history.

Finally, in (e) we depict a more realistic particle history, containing a diverse set of events and particle types. Notably in
depth d = 3, the lone neutron undergoes inelastic scattering with a nucleus, spawning a progeny photon, depicted by the
squiggly line. This photon is immediately absorbed at its next event. In a real simulation, the particle’s history is determined
by the system geometry, and material cross sections (see xs.rs) from which event probabilites are computed.

It is crucial to reinforce that this is a Markov process; the event observed at d = D is completely determined by the parent
event at d = D — 1, and no states prior (d < D —1). A fundamental assumption of phlux.rs is that particles do not interact,
and thus all histories are independent from each other, as well.

Phlux Book

2.1.1 Particles and Events: Structures-of-Arrays

Because transport is a Markov process, and each particle is independent, this problem is embarassingly parallel. We can
simulate the histories of batches of particles through the system concurrently, leveraging techniques and hardware designed
to accelerate such calculations.

Particles are grouped into batches, and their data are organized in a Row-Oriented Tensor Type (Rott). This is a classic
structure-of-arrays approach, which differs from the array-of-structures model, where one would expect to see Vec<Particle>,
or similar.

pub struct ParticleBatch<B: Backend> {

origins: Tensor<B, 2, Float>, // [M, 3] - birth positions
directions: Tensor<B, 2, Float>, // [M, 3] - normalized vectors
particle types: Tensor<B, 1, Int>, // [M] - Neutron(0) or Photon(1)
energies: Tensor<B, 1, Float>, // [M] - MeV

particle ids: Tensor<B, 1, Int>, // [M] - unique IDs

depths: Tensor<B, 1, Int>, // [M] - generation level
origin event ids: Tensor<B, 1, Int>, // [M] - parent event ID

start times: Tensor<B, 1, Float>, // [M] - creation time

The events induced by these particles follow a similar memory model (i.e., a Rott)

pub struct EventBatch<B: Backend> {

origins: Tensor<B, 2, Float>, // [M, 3] - spatial positions
event types: Tensor<B, 1, Int>, // [M] - categorical type
particle ids: Tensor<B, 1, Int>, // [M] - incident particle ID
event ids: Tensor<B, 1, Int>, // [M] - unique event ID
depths: Tensor<B, 1, Int>, // [M] - generation level
times: Tensor<B, 1, Float>, // [M] - time of flight

These tensor-based structures are used during GPU-accelerated simulation. After each simulation step, data is extracted and
stored in a backend for querying (see Section 2.3).

In mathematical notation, we typeset these types according to the rott.rs standard:

P’ (1)
and

E’ (2)

The internal state of our Markov process is therefore E{® | representing collection of events across all histories in the batch
at depth d.

2.2 The Transport Operator

The stochastic transport operator T? advances the simulation from depth d to d + 1:
Ei(d + 1) = T*(E'(d)) (3)
This decomposes into two phases:

1. Progeny Sampling: From events E/(d) and incident particles P7(d — 1), sample progeny P*(d) from nuclear cross section
distributions.

2. Particle Casting: Simulate the flight of P?(d) through the geometry, producing events E¢(d + 1).

Formally:
TH(E/(d)) = B (P (B (d), PI(d — 1)) @)

6

Phlux Book

The transport loop iterates until all particles are terminated (absorbed or escaped):

while active particles > 0 {
let progeny = sample progeny(&events, &particles);
let cast result = geometry.particle cast(&progeny, rng);
storage.store(&cast result);
events = cast result.events;
particles = progeny;

2.2.1 Cell Identification

Before casting, each particle must be assigned to a geometry cell. Given particle positions ¢, we compute cell indices ¢ via
point-location queries against the CSG regions:

¢ = argmax, x,(r') (5)

where x, is the indicator function for cell ¢. The implementation sorts cells by volume (smallest first) and terminates early
once all particles are assigned, avoiding redundant CSG evaluations.

2.2.2 Homogenization

A particle in cell ¢ is guaranteed to experience its next event within cell c¢. Note that a Transmission event at depth d means
the particle enters a new cell ¢’ in d + 1.

This feature enables an important optimization: we can perform exactly one batched particle cast and resultant events are
guaranteed to be within the cell.

Particles are homogenized, sorted by cell index so that particles in the same cell are contiguous:

. s . . .
PP — P70 where ™) < cm(FD) (6)
Cq Cy
° °
homogenize
e - @
: H
geometry

€1 C

Figure 2: Homogenization: particles scattered across cells (left) are sorted into contiguous batches by cell (right).

// Homogenization: group particles by cell

let labeled = particles.map(|batch| {
let labels = find cell indices(&cells, batch.origins());
batch.partition by labels(labels)

1)

let homogenized = labeled.concat by label(max batch size);

This is a spatial-based acceleration structure that eliminates unnecessary ray casts.

2.2.3 Batched Particle Casting

For each homogenized batch, ray casting determines where particles interact:

1. Sample free-flight distance: s ~ Exp(3,) where ¥, is the total macroscopic cross section
2. Ray-trace to cell boundary: compute s;, the distance to exit the current cell
3. Compare distances:

o If s < s;: nuclear event (collision) at distance s

o If s > s;: transmission event at boundary

Phlux Book

e s
v - = b / > 3;
/"
T s T

s < s: nuclear 5 > 53, transmission

Figure 3: Ray casting: sampled nuclear distance s competes with boundary distance s;. Here s < s, so a nuclear event
occurs.

// Ray casting through material
let boundary distances = cell.region.ray cast(&rays);
let nuclear_distances = sample nuclear distances(&batch, &xs, rng);

let is_nuclear = nuclear distances.lower than(boundary distances);
let event distances = nuclear distances.mask where(is nuclear, boundary distances);
let event origins = batch.origins() + batch.directions() * event distances;

For nuclear events, the reaction type is sampled from cross section ratios:

R > X, Xy
P(absorption) = —*, P(scattering) = =%, P(fission) = == (7)
% % %

Invariant: Every particle produces exactly one event. This 1:1 alignment simplifies bookkeeping and enables efficient parallel
processing.

2.2.4 Progeny Sampling

At each event, progeny particles are sampled based on event type:

Event Type Progeny Sampling

Source Sample random direction and energy from source distribution
Scattering Preserve energy; sample new isotropic direction
Fission Sample v neutrons from v(E); each gets random direction and fission spectrum energy

Transmission = Push origin past boundary; preserve direction and energy

Absorption No progeny (particle terminates)

Scattering Transmission Absorption

|
/N

1 progeny v progeny 1 progeny 0 progeny

Figure 4: Progeny sampling by event type. Scattering and transmission produce one progeny each (with direction change or
boundary crossing), fission produces v progeny, and absorption terminates the particle.

Fission events require replication—a single event produces multiple progeny particles:

// Fission: replicate events for each progeny neutron
for (event idx, nu) in nu values.iter().enumerate() {
for in 0..nu {
replication indices.push(event idx);

Phlux Book

}

let progeny origins = events.origins().select(replication indices);

2.3 The Storage Backend

During simulation, particle and event data flows from tensor objects back to the CPU and to a persistent storage backend.

2.3.1 Data Flow

// Simulation phase (tensors, on device)
ParticleBatch / EventBatch
L extract to CPU, async
// Storage phase (Polars DataFrames)
Backend {
TableStorage // events & particles DataFrames
GraphStorage // particle lineage graph
}
L query
// Query phase
TransportData - Observable::measure()

2.3.2 TableStorage

The TableStorage module stores events and particles in columnar tables (Polars DataFrames).

Events DataFrame schema:

Column Type Description
event_id u64 Unique identifier

transport _id String Simulation run ID

depth u64 Depth in the stochastic process, a.k.a generation
event_type String Source, Fission, Scattering, Transmission, Absorption
cell id u64 Geometry cell

origin x/y/z 32 Position (cm)

time 32 Timestamp (ns)

Particles DataFrame schema:

Column Type Description
particle_id u64 Unique identifier

particle type String Neutron, Photon

origin_x/y/z 32 Birth position (cm)

direction x/y/z 32 Unit direction vector

energy 32 Energy (MeV)

origin event id u64 Event that created this particle
caused_event_id u64 Event this particle caused

2.3.3 GraphStorage

The GraphStorage module maintains a directed graph of particle lineage using petgraph:
o Vertices: Events (indexed by EventId)
o Edges: Particles (connecting parent event — child event)

Phlux Book

This enables efficient genealogical queries (parent-child relationships, ancestry tracing, branching factors, etc.) that would
be expensive on tabular data alone.

2.4 Observables

The transport simulation produces genealogies G*(d) = (E*(d),P?(d)) encoding the complete history of particle interactions.
Extracting physical measurements from this data requires defining observables (also called tallies in Monte Carlo liter-
ature).

2.4.1 The Observable Integral
An observable estimates an integral over phase space. The general form is:

T:/Z)R(m)'g[)(m)da} (8)

where:

o« = (r, Q, E,t) is the phase-space coordinate (position, direction, energy, time)
o () is the angular flux (particle density in phase space)

e R(x) is the response function (what we measure at each point)

e D is the integration domain (phase-space region of interest)

2.4.1.1 Tensor-Valued Response Functions
The response function R can produce outputs of arbitrary tensor rank:

Rank Integral Example
0 (Scalar) T = fD Riydx Total flux, multiplication factor k
1 (Vector) T = [, Rpdx Cell flux: R® = x.(r) yields T

2 (Matrix) TV = fD Riiypdx Energy-cell: R% = x,.(r)x,(E)
3+ (Tensor) Tk = fD R9%pdx - Spatial mesh: R = x, ;. (r)

The tensor rank of R determines the shape of the measurement output.

2.4.2 The Observable Pipeline
In phlux, the observable integral decomposes into two components:

Tally Component phlux Concept Mathematical Role
D Filter Restricts the integration domain

Rivin (x) Response<T> Response function with output shape T

An Observable composes these two components:

1. Filter: Selects which events/particles contribute (defines D)
2. Response: Maps filtered data to a measurement value (defines R with its tensor rank)

The key insight is that the response function Rt~ defines both what is measured and the structure of the data returned
to the querier.

Phlux Book

EventFrame / ParticleFrame

}

Filter D

{

Response<T> | Rirvin

|

Measurement<T>

Figure 5: The observable pipeline: data flows through Filter and Response stages to produce a measurement with uncertainty.

2.4.3 Measurements
A Measurement<T> is a physical quantity with statistical uncertainty derived from the number of counts included in the Filter:

m = (p,0) (9)
where p is the measured value and o is the standard deviation.
Again, this concept extends to arbitrary tensors
miik — ('ulijk’ O.ijk) (10)

In phlux, this is implemented as:

pub struct Measurement<T> {
pub value: T,
pub uncertainty: T,

}

pub type Scalar = Measurement<f64>;
pub type Vector = Measurement<Vec<f64>>;

Additional measurement types:

Type Description

Scalar Single value T' with uncertainty o

Vector Indexed values T% with per-element uncertainty o®
Histogram Binned values with bin edges and per-bin uncertainty
SpatialMesh 3D voxel grid T%* with per-voxel uncertainty

TimeSeries Time-indexed values T'(t) with per-timestep uncertainty

Each measurement type carries uncertainty, enabling proper error propagation in downstream calculations.

2.4.4 Filters
A Filter selects which events or particles contribute to the measurement. Mathematically, a filter creates a boolean mask
and applies masked selection:

m? = [PJ(E7)] (boolean mask) (11)
Ef = B/ [m/] (12)
Note the different indices (¢ vs j) indicating that some counts may have been filtered out.

Filters implement the Filter trait:

11

Phlux Book

pub trait Filter: Send + Sync {
fn apply events(&self, frame: EventFrame) -> EventFrame {
frame // Default: no filtering

}

fn apply particles(&self, frame: ParticleFrame) -> ParticleFrame {
frame // Default: no filtering
}

Common filter implementations:

e EventTypeFilter — Filter events by type (Source, Scattering, Absorption, Fission, Transmission)
o ParticleTypeFilter — Filter particles by type (Neutron, Photon)

e DepthFilter — Filter events at specific collision depth

e CellFilter — Filter events in specific geometric cell

o EnergyFilter — Filter particles by energy range [min, max)

2.4.5 Response Functions
A Response maps filtered data to a measurement, encoding both the scoring logic and the output structure. The Response
trait mirrors the Filter pattern:

pub trait Response: Send + Sync {
type Output;
}

pub trait ResponseEvents: Response {
fn respond(&self, frame: EventFrame) -> TransportResult<Self::Qutput>;

}

pub trait ResponseParticles: Response {
fn respond(&self, frame: ParticleFrame) -> TransportResult<Self::Qutput>;

}

The response function R~ determines both what each event contributes and the shape of the output. The tensor rank of

R maps directly to Output:

Response Output Tensor Rank Description

Count Scalar R(x)=1 Count events with Poisson uncertainty
KEffective Scalar R = NNL; Multiplication factor (ratio)

CellFlux Vector

Re(x) = x,.(r) Per-cell event counts
EnergySpectrum Histogram RI(z) = x,(E) Binned energy distribution

SpatialFlux SpatialMesh Rk (x) = Xijre(T) 3D voxel flux
Uncertainty is Poisson-derived for all counting responses (o = v/ N). For ratio responses like k-effective:

11
P 13
Tk N W, (13)

2.4.6 The Frame API
Observables query data through frames, lazy wrappers around the TableStorage backend that provide a fluent filtering API.

12

® DataFrames

Phlux Book

Both ParticleFrame and EventFrame operate over LazyFrames. This allows Polars to J-I-T optimize the query operations

for us.

2.4.6.1 EventFrame
EventFrame provides methods for filtering and querying events:

let frame = data.events()
.with type(EventType::Fission) // Filter by event type

.at depth(5) // Filter by depth

.in cell(cell id) // Filter by geometry cell

.in time range(0.0, 100.0); // Filter by time window
let count = frame.count(); // Terminal: count events
let events = frame.collect(); // Terminal: collect Vec<Event>
let df = frame.dataframe(); // Terminal: get Polars DataFrame

Filter methods:

e .with_type(EventType) / .exclude_type(EventType) — filter by event type
e .at_depth(u64) — filter by generation depth

e .in _cell(Cellld) — filter by geometry cell

e .in_bbox(BoundingBox) — filter by spatial bounds

e .in time range(f32, f32) — filter by time window

2.4.6.2 ParticleFrame
ParticleFrame provides similar methods for particles:

let frame = data.particles()
.with type(ParticleType::Neutron) // Filter by particle type
.energy between(0.1, 10.0); // Filter by energy range (MeV)

let count = frame.count();
let particles = frame.collect();

Filter methods:

o .with_type(ParticleType) — filter by particle type (Neutron, Photon)
e .energy between(f32, f32) — filter by energy range

e .from event(EventId) — particles originating from specific event

2.4.7 Canonical Observables

This section illustrates canonical Observable implementers in phlux.rs.

2.4.7.1 Count (Scalar)
The simplest observable counts events within a domain 2D:

T:/DR(w)w(w)da: where R(z) =1

With Poisson uncertainty o = v N.

13

Phlux Book

Figure 6: Count response: events within domain 2 produce a scalar N + v/ N.

// Count via Frame API
let n = data.events()
.with type(EventType::Fission)
.at _depth(5)
.count();
let uncertainty = (n as f64).sqrt();
println! ("N = {} = {:.2}", n, uncertainty);

2.4.7.2 K-Effective (Scalar Ratio)

The multiplication factor k(d) measures the branching ratio between consecutive depths:

_N@+1) _ [E(d+1)

k(d) = 15
D= N@ T @) 19)
With ratio error propagation:
1 1
O = k FO + Nl (16)

i 0 U S N 6 B

k=15
+0.97

Figure 7: K-effective response: ratio of event counts at consecutive depths d and d + 1.
Interpretation:

e k(d) < 1: Subcritical — population decreases with depth
o k(d) = 1: Critical — population remains constant
e k(d) > 1: Supercritical — population grows with depth

let keff = KEffective::at depth(5);
let result: Scalar = data.measure(&keff)?;
println!("k = {} = {}", result.value, result.uncertainty);

2.4.7.3 Cell Flux (Vector)

Cell flux counts events per geometric cell, producing a vector output:

TC =/ Re(x)y(x)dx where R°(x)= x.(r) (17)
D

14

Phlux Book

The indicator function x,(r) =1 if 7 € cell,, else 0. Per-cell Poisson uncertainty:

o, =VTe (18)
Cy Co C3

. ! 2

[} .. ° R =x, D

o’ — OboD
[J 'Y Y

[] ° Te

Figure 8: Cell flux response: events are binned by geometric cell, producing per-cell counts T¢.

let flux = CellFlux::from cells(&geometry.cells());
let result: Vector = data.measure(&flux)?;

for (cell id, (value, uncertainty)) in result.iter().enumerate() {

println!("Cell {}: {} = {}", cell id, value, uncertainty);
}

2.4.7.4 Energy Spectrum (Histogram)

Energy spectrum bins particles by energy, producing a histogram:
T9 = / RI(z)y(x)dr where RI(x) = x,(E) (19)
D
The indicator function x,(E) = 1if E € [E,, E,,,), else 0. Per-bin Poisson uncertainty.

0 0.1 1 10 20

Figure 9: Energy spectrum response: particles are binned by energy, producing histogram counts 7'9.

let spectrum = EnergySpectrum::with bins(vec![0.0, 0.1, 1.0, 10.0, 20.0]);
let result: Histogram = data.measure(&spectrum)?;

for (bin, (value, uncertainty)) in result.iter().enumerate() {
println! ("Bin {}: {} = {}", bin, value, uncertainty);
}

2.4.7.5 Spatial Flux (SpatialMesh)
Spatial flux bins events into a 3D voxel grid:

Tijkz/ RF(x)y(x)dx where RYF(x) = x (1) (20)
D

The indicator function x;;;(r) = 1 if r is in voxel (4, 5, k), else 0. Per-voxel Poisson uncertainty.

15

Phlux Book

ijk
- w Tidk
3D mesh

(4,7, k) voxels

Figure 10: Spatial flux response: events are binned into 3D voxels, producing a mesh T%*.

let mesh = SpatialFlux::new(bounds, [10, 10, 10]);
let result: SpatialMesh = data.measure(&mesh)?;

for ((i, j, k), (value, uncertainty)) in result.iter() {
println! ("Voxel ({},{},{}): {} = {}", i, j, k, value, uncertainty);
}

2.5 Transport as a Genealogy

The genealogy G'(d) = (E*(d),P*(d)) can be represented as a directed graph G(E, P), where:
« Vertices correspond to events (rows in Ei(d))

« Edges correspond to particles (rows in P%(d))

This forms a forest of trees, each rooted at a source event and extending until all progeny are terminated. The depth d of
an event is the number of edges traversed from the root.

This graph representation enables:

1. Genealogical queries (parent-child relationships)

2. Criticality analysis (branching factors)

3. Path-based tallies (event sequences)

4. Lineage tracking (contribution from specific sources)

2.5.1 A Genealogical View on Criticality
The multiplication factor k(d) is the average branching factor of the forest at depth d:

k(d) = Ecepalble)]
B ZeeE(d) be) (21)
|E(d)|
where b(e) is the outgoing degree of vertex e (number of progeny particles produced by the event).

The uncertainty in k(d) follows the observable contract:

16

Phlux Book

crater.rs is a library for constructing and analyzing N-dimensional fields.

3.1 Scalar Fields

A scalar field is a function that assigns a number to each point in space:
f:R* =R (23)
In crater.rs, types that implement ScalarField<N> behave like the class of functions above.

In one dimension, a scalar field is simply a function f: R — R. Consider a simple quadratic:
flz) = 2% —r° (24)

The parameter r defines a family of fields.

r=-1 r=0

r=05 r=1

4.04
3.0

304
2,04

2.0
10

10

: h \/

2.0 15 1.0 0.5 0.0 05 1.0 15 20 20 15 10 05 0.0 05 1.0 15 20

Figure 11: 1D scalar field f(z) = 2% — r? for different values of r. Blue shading indicates f < 0 (inside), orange indicates f >
0 (outside).

In two dimensions, scalar fields become f : R? — R. We can extend our earlier example naturally:

flz,y) =2® +y> —1? (25)

Phlux Book

r=05 r=1

Figure 12: 2D scalar field f(z,y) = 2% + y? — r? for different values of r. Isosurfaces are presented as dashed contours.

@® Isosurfaces
An isosurface is a locus of points where the scalar field is constant:

of ={z7 e R" | f(z7) =c} (26)

crater.rs’s IsoSurface type represents a pairing of a function f: R™ — R with a constant c.

Of course we are not restricted to just circular fields. Fields can be defined by any function f: R™ — R.

Phlux Book

/// T(x, y) = sin?(x) + cos?(y)

fn eval trig(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {
let n = pts.dims()[0];
let x = pts.clone().slice([0..n, 0..1]).squeeze::<1>();
let y = pts.slice([0..n, 1..2]).squeeze::<1>();
x.sin().powf scalar(2.0) + y.cos().powf scalar(2.0)

}

/77 f(x, y) =x -y
fn eval xy(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {
let n = pts.dims()[0];

let x = pts.clone().slice([0..n, 0..1]1).squeeze::<1>();
let y = pts.slice([0..n, 1..2]).squeeze::<1>();
X *y

}

/77 f(x, y) = exp(-(x* + y?) / 10)
fn eval gaussian(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {
let n = pts.dims()[0];
let x = pts.clone().slice([0..n, 0..1]).squeeze::<1>();
let y = pts.slice([0..n, 1..2]).squeeze::<1>();
(x.clone() * x + y.clone() * y).div scalar(2.0).neg().exp()

}

/// f(x, y) = sin(x * 4)

fn eval sin x(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {
let n = pts.dims()[0];
let x = pts.slice([0..n, 0..1]).squeeze::<1>();
x.mul scalar(4).sin()

19

Phlux Book

sin?(x) + cos?(y)

exp(—(x2 + y?) [2) sin(x * 4)

05

0.0

0.5

Figure 13: Exotic 2D scalar fields.

This abstraction is not limited to closed-form functions. Any programmable function can be used to define a field by
implementing the ScalarField trait.

/// A Mandelbrot escape-time field.

///

/// For each point c = (x, y) in the complex plane, iterates

/// z {n+1l} = z n?2 + c starting from z @ = 0. Returns a normalized
/// escape time in [-1, 1], where -1 indicates points that never
/// escape (inside the set) and positive values indicate how

/// quickly the point escaped.

[\]

0

Phlux Book

#[derive(Clone)]
struct MandelbrotField {
max_iter: usize,

}

impl ScalarField<2, Backend> for MandelbrotField {
fn evaluate(&self, origins: Tensor<Backend, 2>) -> Tensor<Backend, 1> {
let n = origins.dims()[0];
let device = origins.device();

let cx = origins.clone().slice([0..n, 0..1]).squeeze::<1>();
let cy = origins.slice([0..n, 1..2]).squeeze::<1>();

let mut zx = Tensor::<Backend, 1>::zeros([n], &device);

let mut zy = Tensor::<Backend, 1>::zeros([n], &device);

let mut result = Tensor::<Backend, 1>::full([n], -1.0, &device);
let mut escaped = Tensor::<Backend, 1>::zeros([n], &device);

for iter in 0..self.max_iter {
// z? = (zx + i-zy)? = (zx? - zy?) + 1i-(2-zx-zy)
let zx2 = zx.clone() * zx.clone();
let zy2 = zy.clone() * zy.clone();
let new zx = zx2.clone() - zy2.clone() + cx.clone();
let new zy = zx.clone() * zy * 2.0 + cy.clone();

// Escape criterion: |z|2 > 4
let mag2 = zx2 + zy2;
let just escaped =
mag2.greater elem(4.0).float() * (escaped.clone().neg() + 1.0);

// Record normalized iteration count for escaped points
let iter value = (iter as f32 / self.max_iter as f32) * 2.0 - 1.0;
result = result.clone() * (just escaped.clone().neg() + 1.0)
+ just escaped.clone() * iter value;
escaped = escaped + just escaped;

ZX = new_zx;
zZy = new_zy;

h

result

21

Mandelbrot Escape Time

Phlux Book

Figure 14: A field with no closed-form expression. This Mandelbrot field computes an iterative escape time at each point,

generating a fractal pattern.

3.1.1 Batch Evaluation

Evaluation of scalar fields at points in R™ is an embarassingly parallel operation. Thus, we enable efficient batch evaluation

by defining a tensor-valued function F?* : R™*" — R™:
Fi(X5) =t
where v* is a rank-1 tensor with length m.
F? satisfies the following two properties:
FF(Xk) = f(27) Vk € [1,m] with 2/ = X%
and

OF . OF

Xk~ J AX1i

(27)

(28)

(29)

The first property states that F*® is equivalent to evaluating f over each row of X% independently. The second property
states the Jacobian is block diagonal—each output row is a function of only its corresponding input row. Colloquially, this

means that all rows are evaluated independently.

For the remainder of this chapter, we will refer to scalar fields using the F* notation to reinformce that our algorithms are

operating on batches of input points.

3.2 Regions

A Region is the volume enclosed by an isosurface:

22

Phlux Book
Rp = {a/ | Fi(27) <0} (30)

The simplest Region is a halfspace, which divides R™ into two sets: those point within the Region and those without it.

Figure 15: A circular Region. Hatching indicates the interior.

® Contiguity

Depending on the behavior of F? or isosurface value, a Region may not be contiguous:

// A field that produces non-contiguous regions: sin(mx) * sin(my)
// This creates a checkerboard pattern where each cell is a separate region
let field = FnField::new(|pts: Tensor<Backend, 2>| {
let n = pts.dims()[0];
let x pts.clone().slice([0..n, 0..1]).squeeze::<1>();
let y = pts.slice([0..n, 1..2]).squeeze::<1>();
(x * PI).sin() * (y * PI).sin()
1)

23

Phlux Book

Figure 16: A non-contiguous Region from f(z,y) = sin(7z) sin(ry). Every blue cell in the checkerboard pattern is a
member of the same halfspace Region.

3.2.1 Constructive Solid Geometry

Constructive Solid Geometry (CSG) enables the creation of arbitrarily complex shapes through the algebraic combination
of primitive Regions. A number of common primitives are implemented via the FieldND<const N: usize> enum. However,
CSG can incorporate any Region, not just those made from our primitives.

CSG is defined by a collection of binary and unary algebraic operations. These operations bear resemblance to set-theoretic
operations:

1. Union: F* U G* = min(F*, G%)

2. Intersection: F* N G* = max(F*,G")

3. Complement: F" = —F"

From this we derive the difference operation F'\ G = Fi N Gt

In direct set notation:
RpURg = {7 | Fi(2?) <0 or G*(27) < 0}
RpNRg = {z? | F'(27) <0 and G*(27) <
Rp\Rg = {a7 | F'(2?) <0 and G*(27) >

} (31)
}

0
0
@ TIsosurface thickness

In practice, testing F z'(ar;j) = 0 exactly is numerically fragile. Numerical methods are sensitive to the finite precision of

the floating-point representation of the real numbers.

24

Phlux Book

Consider a 1D field f(z) where f(z;) <0, f(zy) > 0 and z; and z, are adjacent representable floating point numbers

(i.e., they differ by their least significant bit, only). In this case, there exists no z, such that f(z,) = 0 exactly and z; <
x, < x,, without increasing our floating point precision.

To combat this, we use an epsilon tolerance ¢ to classify points into three categories:
o Inside: f(z) < —¢

« On: [f(z)| <e

e Outside: f(z) > ¢

Figure 17: Classification bands around the zero isosurface of a circular field in 2D. The dashed contours show f = —¢
and f = 4. Points between them are classified as “on” the surface.

25

Phlux Book

Figure 18: CSG operations: union (top-left), intersection (top-right), complement (bottom-left), difference (bottom-right).

These operations can be composed to create increasingly complex Regions. Region itself is an enum that behaves like a
tree node:

// pub enum Region<const N: usize, B: Backend> {

// HalfSpace(Isosurface<N, B>, Side),

// Union(Box<Region<N, B>>, Box<Region<N, B>>),

// Intersection(Box<Region<N, B>>, Box<Region<N, B>>),
/7 }

By composing these operations, we create a tree of operations that concretely define the composite Region:

(AU BH)\ C*

Phlux Book

Figure 19: A CSG tree representing the functional composition (A* U B*) \ C". Leaf nodes are primitive Regions; internal

nodes represent intermediate Regions.

These trees are unbounded in depth, enabling the procedural creation of complex Regions:

/// Constructs a 2D gear region with the specified number of teeth.

11/
/// The
/// - A

gear is built from CSG primitives:
circular body (outer radius)

/// - A circular hole (inner radius)
/// - Teeth formed by intersecting pairs of halfspaces (lines)

11/

/// Each tooth is a wedge created by intersecting two halfspaces
/// whose normals point inward, rotated around the gear center.
pub fn gear 2d<B: burn::tensor::backend::Backend>(

outer radius: 32,

inner radius: f32,

num_

teeth: usize,

tooth height: 32,
tooth width fraction: 32, // fraction of tooth spacing (0..1)
) -> Region<2, B> {

use

std::f32::consts::PI;

// Base body: outer circle minus inner hole

let
let
let

body: Region<2, B> = FieldND::circle(outer radius).into isosurface(0.0).region();
hole: Region<2, B> = FieldND::circle(inner_radius).into isosurface(0.0).region()
mut gear = body.clone() & -hole;

// Add teeth around the circumference

let
let
let

for

tooth_radius = outer_radius + tooth_height;
angle per tooth = 2.0 * PI / num_teeth as f32;
half tooth angle = angle per tooth * tooth width fraction * 0.5;

iin 0..num_teeth {
let center angle = i as f32 * angle per_ tooth;

// Create a tooth as a wedge: intersection of two halfspaces

// Left edge of tooth

let left angle = center angle - half tooth angle;

let left normal = [left angle.sin(), -left angle.cos()];

let left plane: Region<2, B> =
FieldND::1line(left normal).into isosurface(0.0).region();

27

Phlux Book

// Right edge of tooth

let right_angle = center_angle + half_tooth_angle;

let right normal = [-right angle.sin(), right angle.cos()];

let right plane: Region<2, B> =
FieldND::line(right normal).into isosurface(0.0).region();

// Tooth is the wedge between planes, bounded by outer and inner radii

// The tooth only extends outward from the body (between outer radius and tooth radius)

let outer bound: Region<2, B> =
FieldND::circle(tooth radius).into isosurface(0.0).region();

let inner bound: Region<2, B> = body.clone();

let tooth = left plane & right plane & outer bound & -inner bound;

gear = gear | tooth;

6-tooth gear 12-tooth gear

Figure 20: Procedurally generated gears with 6 and 12 teeth, built from circles and halfspaces.

3.2.1.1 Algebras
A CSGAlgebra is a concrete implementation of the CSG operations. In the mathematical sense:

A = (P(D),U,n) (32)

where P (D) is the power set of domain D.

3.2.1.1.0.1 Differentiable Algebras

Differentiable approximations of CSG operations can be constructed:

F'+G'+ VFFi + G'G' — 20/ F'G’

FluGi = :
14+ at (33)
FinG — F'+ G —FF 4+ GG — 2aiFiGt
N 1+ ot

28

Phlux Book

where o controls smoothness. o = 1 reduces to the original min-max operations.

3.2.1.1.0.2 Blending
A custom blending function can be added to both U and N operators:
. . ag
p(F',G") = — — (34)
Ft Gt
1+ (&) + (%)

where ag, a;,a, are positive constants that control the shape of the blending function.

3.2.2 Primitives

crater.rs provides a number of dimension-generic primitive Regions via the FieldND interface.

Line (halfspace) Circle

Ellipse Bounding Box

054

Figure 21: 2D primitives: line (halfspace), circle, ellipse, and bounding box.

29

Phlux Book

3.3 Transformations
Until now, all fields we have discussed have been centered at the origin. We extend our framework to include arbitary
transformations on our fields.

Any function 7% : R™*" — R™*" can perform covariant transformations on our fields without changing our definition of F*:
F{(X9) = FY(TH (X)) (35)
In plain language, the transformation is on the domain of F?, not its image.

crater.rs provides a number of transformations to use off-the-shelf via the Transformation enum.

3.3.1 Translation
Transformation::Translate implements a tensor-valued function 7% : R™*" — R™*":

Ti(X%) = X5 — 3 (36)

where t/ € R™ is the translation vector.

fn translate before<B: burn::tensor::backend::Backend>() -> Region<2, B> {
FieldND::circle(0.8).into isosurface(0.0).region()

}

fn translate after<B: burn::tensor::backend::Backend>() -> Region<2, B> {
translate before().transform(Transform::translate([1.0, 0.5]))

}

Before After

Figure 22: Left: original circle. Right: circle translated by (1,0.5).

3.3.2 Scaling
Transformation::ScaleDim implements a tensor-valued function S : R™*? — R™*":

Si(Xi) = Xis, (37)

where s; € R is the scale factor for the ith dimesion, only.

30

Phlux Book

fn scale before<B: burn::tensor::backend::Backend>() -> Region<2, B> {
FieldND::circle(1.0).into isosurface(0.0).region()

}

fn scale after<B: burn::tensor::backend::Backend>() -> Region<2, B> {
scale before()
.transform(Transform::scale dim(0, 1.5))
.transform(Transform::scale dim(1, 1.5))

Before After

Figure 23: Left: unit circle. Right: scaled uniformly by factor 1.5, resulting in radius 1.5.

@® non-unitarity of scaling

The scaling transformations are not unitary operations. A circle of radius 1 scaled by factor 2 produces a different field
than a circle constructed with radius 2, even though their boundaries coincide:

// Demonstrates that scaling is NOT a unitary operation on scalar fields.
// A circle(l) scaled by 2 produces a DIFFERENT field than circle(2).
// The boundary (isosurface at 0) is the same, but field values differ.

/// Circle of radius 1, scaled by factor 2 in both dimensions
fn scaled circle<B: burn::tensor::backend::Backend>() -> Region<2, B> {
FieldND::circle(1.0)
.into isosurface(0.0)
.region()
.transform(Transform::scale dim(0, 2.0))
.transform(Transform::scale dim(1, 2.0))

}

/// Circle of radius 2 (constructed directly)
fn direct circle<B: burn::tensor::backend::Backend>() -> Region<2, B> {
FieldND::circle(2.0).into isosurface(0.0).region()

}

31

Phlux Book

circle(1) scaled x2 circle(2)

e
T e g e,
e e

s
=

o s

-
e
s

T
o
s,

72
Srrrir?

e g
.. o gl

rerare
e

i
s

—
it
s
—_—

v,
—

',

e,

=
=

",

S
s
ey

X
X
e

S ot
e T
e

Figure 24: Left: circle(1) scaled by 2. Right: circle(2). The boundaries match, but the field gradients differ.

3.3.3 Rotation
Transformation::Rotate N-dimensional rotation R?: R™*"™ — R™*" with R? € SO(n) can be represented as a sequence of

plane rotations.

A plane rotation is a rotation in a 2D plane spanned by coordinate axes a and b, parameterized by angle 6,,. Call this
G(a’v bv eab) .

The general N-dimensional rotation is a product of @ plane rotations:

Ri=1;[2

a

[G(a,b,0,) (38)

-

b

Il
—

Intuitively, G(a,b,0) is the identity tensor.

fn rotate before<B: burn::tensor::backend::Backend>() -> Region<2, B> {
FieldND::ellipse(1.2, 0.6).into isosurface(0.0).region()

}

fn rotate after<B: burn::tensor::backend::Backend>() -> Region<2, B> {
rotate before().transform(Transform::rotate(0, 1, std::f32::consts::FRAC PI 4))

}

32

Phlux Book

Before After

Figure 25: Left: original ellipse. Right: rotated by 45deg in the xy-plane.

3.3.4 Non-standard Transformations
Transformations are not limited to those which are exposed by the Transformation enum. Any implementer of the
ApplyTransformation trait can be used to covariantly tranform a field.

For example, the Poincaré disk model maps the hyperbolic plane H? to the open disk D? = {z eC: |zl < %}, compressing
points far from the origin toward the boundary.

For a tensor of points X% € R™*" with radial distance r* = /X% X}, the transformation P’ : R™*™ — D™*" is:

) - y h
Pi(X%) = XUM (39)
nr
where n € RY is the scale parameter controlling the disk radius %
The inverse transformation P~1 : D™*™ — R™*™ yged for covariant field evaluation is:
PL(X1) = Xﬁ%f(m) (40)

Points at r® — 0o in hyperbolic space map to the disk boundary ¢ — %

use crater::analysis::prelude::RayField;
use crater::csg::prelude::ApplyTransformation;
use crater::csg::transformations::Covariant;

/// A Poincaré disk transformation that maps the infinite plane
/// into a bounded disk. Points far from the origin are compressed
/// toward the boundary.
///
/// Uses the formula: r' = tanh(r * scale) / scale
/// where r is the distance from the origin.
#[derive(Clone)]
pub struct PoincareDisk {
pub scale: f32,
}

33

Phlux Book

impl<B: burn::tensor::backend::Backend> ApplyTransformation<2, B> for PoincareDisk {
fn apply scalar field(
self,
original: Box<dyn ScalarField<2, B>>,
) -> Box<dyn ScalarField<2, B>> {
let scale = self.scale;
Box::new(Covariant::ScalarField {
field: original,
// Forward: disk coords - hyperbolic coords (inverse of projection)
transform: Box::new(move |points: Tensor<B, 2>| {
let n points.dims()[0];
let x = points.clone().slice([0..n, 0..1]);
let y = points.clone().slice([0..n, 1..2]);

// r = sqrt(x? + y?)
let r = (x.clone() * x.clone() + y.clone() * y.clone()).sqrt();
let r_safe = r.clone().clamp_min(1le-8);

// Inverse of tanh: arctanh(r * scale) / scale
// arctanh(x) = 0.5 * In((1+x)/(1-x))
let rs = (r_safe.clone() * scale).clamp(-0.999, 0.999);
let r hyp =
((rs.clone() + 1.0).log() - (-rs + 1.0).log()).mul scalar(0.5 / scale);

// Scale factor: r hyp / r
let factor = r hyp / r safe;
let new x = x * factor.clone();
let new y =y * factor;
Tensor::cat(vec![new x, new y], 1)
1),
// Inverse: hyperbolic coords - disk coords
inverse transform: Box::new(move |points: Tensor<B, 2>| {

let n = points.dims()[0];
let x = points.clone().slice([0..n, 0..1]);
let y = points.clone().slice([0..n, 1..2]);

let r = (x.clone() * x.clone() + y.clone() * y.clone()).sqrt();
let r _safe = r.clone().clamp min(1le-8);

// r' = tanh(r * scale) / scale
let r disk = (r_safe.clone() * scale).tanh() / scale;

let factor = r disk / r_safe;
let new x = x * factor.clone();
let new y = y * factor;
Tensor::cat(vec![new x, new y], 1)
5D o
1)
}

fn apply ray field(self, original: Box<dyn RayField<2, B>>) -> Box<dyn RayField<2, B>> {
// Poincaré disk ray field transformation not implemented
original

34

Phlux Book

Before After
0 ’r 1 204 'F— _ﬂ

% \
w.y@? \

|
10O O 0

Ay ﬁl
§§ ‘:§§ §§§' égif

“,‘L i “. 201 _ — il

T T T T T d
3.0 4.0 20 15 10 05 0.0 05 1.0 15 20

O

o O
o O

0.0

© 0 © O
0.0 O
.0 O
MK
©_ O

&

O O

O
O
O
J
\

=
&
s
=]
5
g
5
5

Figure 26: A grid of circles before (left) and after (right) Poincaré disk projection. Circles far from the origin appear smaller
and compressed toward the disk boundary. Notice that the original bounds are [—4, 4] x [—4, 4], but in the transformed space,
all points map to the disk of radius 717 where 7 is the Poincaré disk scale. Field values outside of the disk are an artifact of

our use of clamp.

3.4 Ray Casting

A batch of rays is defined by:

« Origins X% € R™*"

« Directions U% € R™*" (unit vectors)

Ray casting is the computational problem of finding a tensor A® such that F*(S%(A%)) = 0%, where S% is the function
representing ray extensions:

S9(AF) = X 4 AU (41)

There are a number of methods for computing A?, either via analytical computation, or numerical iteration. The class of F*
determines which methods are available for use, and which are performant.

@® Row-Oriented Tensor Types

crater.rs’s API for ray casting is mediated by the Rays and RayCastResult types. These types are aliases for Rotts<B,
RayBatch<B, N>> and Rotts<B, RayBatchCastResult<B, N>>, respectively (see Section 5).

3.4.1 Analytical Method
The analytical method computes intersection points directly by making the implicit function explicit:

Fi(S%(AY)) = 0 (42)
is inverted to solve for A%:
AP = Ri(X, i) (43)

Where R’ is a RayField. RayFields are similar to ScalarFields, but take an extra input parameter: a tensor of unit directions
U*. The field returns the rank-1 tensor of distances from X% to the point at which F*(S%(A%)) = 0° along the direction U%.

3.4.1.1 Hyperplanes

For a hyperplane with normal vector n?, define:

Phlux Book
o =Xn;, B =U"n, (44)
The ray field is:

%

Ri(XU UH) = =

5 (45)
Degenerate cases:

o If 8% = 0: ray is parallel to the hyperplane (undefined)

o If a? = 0: ray origin is on the hyperplane

o If g—: < 0: intersection is behind the ray origin

Hyperplane

Figure 27: Ray-hyperplane intersections. Rays either hit the surface (green X) or miss (extending to bounds).
3.4.1.2 Hyperspheres

For a hypersphere with radius r, the primal scalar field is:

Fi(X%) = XX} —r? (46)
Substituting the ray equation and expanding;:
0" = F'(X" + A'U"Y)
= (XY + A'UY) (XJ’ -I-A’T]j) — 2 (47)
= (U9U) NN+ (2X9UF) A + (XU XE—1?)
This is a quadratic in A*. With coefficients:

36

o' = U}, b =2X0U}, o = XUXi—r?

The discriminant is A? = b*b* — 4a’c?, and solutions are:

_ —b% + Vbibi — 4aict

Az’
2a"
Cases:
« A! < 0: no intersection
o A' = 0: tangent (single point)
« A? > 0: two intersections; take smallest non-negative root
Hypersphere

2.0

0.5

0.0

=2.0
=2.0 -1.5 -1.0 0.5 0.0 0.5

1.0

15

2.0

Phlux Book

(48)

Figure 28: Ray-hypersphere intersections. Rays from outside hit the surface; rays from inside exit; some rays miss entirely.

3.4.1.3 Hypercones

For a cone with unit-axis a’ and opening angle 6:
Fi(X9) = (X¥aj)* — cos(0)? (X X))
The ray intersection yields a quadratic with coefficients:
at = (Uijaj)2 — cos(0)*UU;
b* = 2XU} (a; — cos(6)?)
ct = (Xijaj)2 — cos(6)? (XinJ’:)

Solutions follow the same quadratic formula, taking the smallest non-negative root.

37

Phlux Book

Hypercone

Figure 29: Ray-hypercone intersections. The cone extends from the apex; rays may hit either edge or pass through.

3.4.1.4 Hypercylinders
For a hypercylinder with radius r extending along the last dimension, project to the first N — 1 dimensions:

Let X/“WN=1 = X for j € [I,N — 1] and U"*N-V) = U¥ for j € [1,N —1].
The quadratic coefficients become:

ai — U/i(N—l)U'(/Iz;r_l)y bi — 2X/i(N—1)[](']7i]_1)’ ci — X/i(N—l)X(/}'V_l) o 7.2 (52)

3.4.1.5 Composite CSG Regions

The analytical method can be extended to support any CSG Region that is composed entirely of primitives whose RayField
is defined.

Given a batch of rays with origins X% and unit directions U%, the algorithm enumerates all K primitive halfspaces {F,} in
the CSG tree. For each primitive, we evaluate its RayField R} to obtain candidate intersection distances dj. The final result
selects the nearest distance where the ray actually intersects the composite region’s boundary.

38

Phlux Book

ANALYTICALRAYCAST (X, U, F?):

{F}c}kK: | ¢ enumerate halfspaces in CSG tree

1

2 for k< 1to K do

3 di « RiL(XY,UY) // evaluate RayField
4 dl+

5 for k<« 1to K do

6 if F1(S%(d})) = 0° and dj, < d then

7 di «+ di.

8

return d:

Algorithm 1: Analytical ray casting for composite CSG regions.

3.4.2 Bracket and Bisect Algorithm

For complex CSG regions without analytical solutions, numerical methods find intersections iteratively. The bracket-and-
bisect approach proceeds in two phases: first bracketing to find an interval containing a root, then bisection to refine it.

3.4.2.1 Ray Bracketing

Bracketing marches along each ray in fixed steps until the field value changes sign, indicating the isosurface lies within the
current interval. The inputs are ray origins X%, unit directions U%, the scalar field F?, step size A), and maximum search
distance A, The algorithm maintains left and right bracket positions L and R, using a mask M? to selectively update
only those rays that haven’t yet found a sign change.

RAYBRACKET(XY, U, Ft AN, A ..):
Lt + 0t // left bracket
R+ Lt // right bracket
F} «+ Fi{(S8%(L%))
while R* <), do
Ri « L'+ AX
F} « Fi(SY(RY))
M+ 1Y{F}F; > 0} // no sign change yet
Li « MR + (1— M)
F} « M'F}, + (1— M%) F}
return (L, RY)

© 00 N O Ot s W N

—
o

Algorithm 2: Ray bracketing: march along rays until a sign change is detected.

39

Phlux Book

Fi(S4(0)

bracketed root

)

PMF(R) >0

F(L)F(R)Q

—

mlarch directién

®
Y
>

L R'

Figure 30: Ray bracketing: marching along the ray in steps of AX until a sign change is detected, indicating the isosurface
lies within the bracket [L*, R*].

3.4.2.2 Ray Bisection

Once a bracket [Li, Ri] containing the isosurface is established, bisection refines it by repeatedly halving the interval. At each
iteration, the midpoint C* is evaluated and the bracket is narrowed to whichever half contains the sign change. The mask
M? determines whether the root lies in the right half (when F} and Fé have the same sign) or the left half. The algorithm
runs for a fixed number of iterations n; the final bracket width is AX\/2™ where AM is the initial bracket width from the
marching phase.

RAYBISECT(L!, RY, F*, n):

1 F} « F{(S¥%(LY))

2 for k< 1tondo

3 Ol L3

4 F «+ Fi(SY(CY))

5 Mt]l’{FIfFCZf > Oi} // root in right half
6 Ll « MiCi + (1— M) L

7 R'+ M'R'+ (1— M")C*

8 F} «+ M'F. + (1 - M")F}

9 return R’

Algorithm 3: Ray bisection: iteratively halve the bracket to locate roots.

Phlux Book

Fi(S4(0)

Y
>

Figure 31: Ray bisection: iteratively halving the bracket [L%, R"] to locate the root. Each iteration evaluates the midpoint
C" and updates the bracket to the half containing the sign change.

3.4.3 Newton’s Method

For autodifferentiable fields, Newton’s method provides quadratic convergence by using the gradient to predict where the
function crosses zero. Given ray origins X% and directions U%, the algorithm iteratively refines position estimates. Each
iteration computes the field value f* and the directional derivative ¢¢ = VF'U%¥ along the ray, then applies the Newton
update to move toward the root. A step size parameter « allows damped updates for stability. Rays with zero gradient are
nudged by ¢ to escape degenerate points.

NEWTONRAYCAST(XY, UY, Fi n, a, §):
1 P+ X9
2 for k< 1tondo
3 [t Fi(PY)
4 g' « VF{(P9UY // directional derivative
5 if g =0 then ¢° < § // nudge degenerate cases
6 P« pii — oLy
o
7 return PY

Algorithm 4: Newton’s method: use gradient information to converge quadratically.

41

Phlux Book

tangent: V fd

Y
>

Figure 32: Newton’s method: using the tangent line (directional derivative V fd) to compute successive approximations.
Exhibits quadratic convergence—each iteration roughly doubles the number of correct digits.

3.5 Analysis Modules

3.5.1 Volume Estimation (Monte Carlo)
The algorithm samples N points uniformly from a bounding domain D and evaluates the scalar field F* at each point. Points
with F* < 0 lie inside the region. The volume ratio equals the fraction of interior points, scaled by the domain volume.

MONTECARLOVOLUME(F?, D, N):

X% ~ Uniform(D) // sample N points
Vi Fi(X"Y)

C ey 1{vi<ol}

return Vol(D)C/N

=W N =

Algorithm 5: Monte Carlo volume estimation.

The volume approximation:

42

Phlux Book

n= 3.3600 (N = 25) n= 3.0400 (N =100)

n= 3.0840 (N = 1000)

2 (N =50000) s
A
Mool Lo ,¢;'§§¢§’}‘é£~ SR S

31
iﬁ%@ i ‘*%i;.;‘

i
£

Figure 33: Monte Carlo estimation of 7. Random points in [0, 1]? are classified as inside (blue) or outside (orange) a quarter
circle. As N increases, the estimate converges to m with error 0(1 /VN)

3.5.1.1 Error Analysis
The error decreases as O(ﬁ) The standard error is:

p(1—p)

V(RY)

where p = VD) is the proportion of domain occupied by the region.

3.5.2 Gradient Computation
The gradient of F* at origins X¥ is:

43

Phlux Book

QIF (X))
o L J (X 25
VF{(X7) = §IFi(X") = rF SX) (55)
QIFi(XmI)
Gradients are computed via automatic differentiation through the Burn framework.
3.5.2.1 Surface Normals
For origins X% on isosurface F* (X i) = ¢, the unit normal is:
VFi{(X)
" VX)) %)

3.5.3 Gradient Descent
Gradient descent finds points inside a region by iteratively stepping in the direction of steepest descent. Starting from origins
X%, the algorithm updates positions:

X =X —aVF(X)) (57)

where « is the step size. The process terminates when points satisfy the stopping condition (e.g., F*(X%) < 0) or after a
maximum number of steps.

Gradient Descent

Figure 34: Gradient descent from an exterior point toward the region interior. Each step follows the negative gradient
direction. Purple points show intermediate steps; green indicates convergence.

44

Phlux Book

3.5.4 Root Finding (Newton’s Method)
To find points on the isosurface (not just inside), Newton’s method provides fast convergence. The update rule for finding

Fi(Xi7) = 0:
VF(X}7)

-~ 58
A (3%)

X0, = X0 - Fi(xP)

This is the multi-dimensional Newton step projected along the gradient direction.

Newton Root Finding

Figure 35: Newton root finding converging to the isosurface. The path shows rapid convergence characteristic of Newton’s
method. The green marker indicates successful convergence to the surface.

3.5.5 Adaptive Bounding

The bounding tree algorithm recursively subdivides space to find a tight bounding box around a region. Each cell is classified
as:

o Inside: entirely contained within the region

e Outside: entirely outside the region

¢ Boundary: intersects the isosurface

Cells are subdivided until reaching maximum depth or becoming homogeneous. The tight bounding box is computed from
all Inside and Boundary leaf cells.

45

Phlux Book

Adaptive Bounding Tree

0.5

0.0

=15 =10 0.5 0.0 0.5 1.0 15

Figure 36: Adaptive quadtree bounding of a gear region. Green cells are inside, orange are outside, yellow intersect the
boundary. The green outline shows the computed tight bounding box.

3.5.5.1 Cell Classification
Given a bounding box D with bounds [xfnin,xf;mx], we generate a uniform grid of s sample points where s is the samples
per dimension. For the ¢-th sample point in the grid:

X4 =gl 4T (xj - xfnin) (59)

max

where T € [0,1]™*" is the normalized grid coordinate for sample 4 in dimension j.
The cell is classified by evaluating F*(X%):

o Inside: F*(X%) < 0Vi

o Outside: F*(X%) > 0Vi

e Boundary: otherwise (mixed signs or samples On surface)

3.5.5.2 Subdivision Scheme
Each Boundary cell is subdivided into 2™ children by splitting along each axis at the midpoint. In 2D this produces 4
quadrants (quadtree); in 3D it produces 8 octants (octree), and so on.

For any intermediate bounding box with center ¢/ = %, the k-th child (k € [0,2™ — 1]) has bounds determined by the
binary representation of k. For each dimension j:

(k)i _ xf;lin if bit jof k=0

) — ' 60
i {cJ otherwise (60)

xT

46

Phlux Book

20—

max ~

e
{c if bit jof k=0 (61)

j .
x] . otherwise

3.5.5.3 Algorithm

FINDBOUNDINGTREE(F?, D, d

max’ 8)’

1 nodes <+ (), leaves < 0

2 SubdivideRecursive(D, 0) // start at root with depth 0

3 return (nodes, leaves)

4

5 SubdivideRecursive(B, d):

6 X < uniform grid of s samples in B

7 v« FH(X")

8 status < Classify(v*)

9 if status = Boundary and d < d,,, then
10 {Bk}iigl <+ split B into 2V children
11 for k«+ 0to 2V — 1 do
12 SubdivideRecursive(By, d + 1)
13 else
14 append (B, status) to leaves

Algorithm 6: Adaptive bounding tree construction. The algorithm recursively subdivides Boundary cells until reaching
maximum depth d,_,. or finding homogeneous (Inside/Outside) cells.

3.6 Mesh Extraction

Mesh extraction converts an implicit surface representation (the zero level set of a scalar field) into an explicit geometric
representation suitable for rendering, physics simulation, or export to standard formats.

3.6.1 Simplicial Complexes

The output of mesh extraction is a simplicial compler—a collection of simplices that approximate the isosurface. A k-simplex
is the convex hull of k£ + 1 non-degenerate points:

k Name Vertices Use

0 Point 1 Isolated samples
1 Segment 2 Curves, contours
2 Triangle 3 Surface meshes
3 | Tetrahedron 4 Volume meshes

In n dimensions, the isosurface F* = ¢ is an (n — 1)-dimensional manifold. Mesh extraction approximates this manifold using
(n — 1)-simplices:

o 2D fields: Extract 1-simplices (line segments) forming a polyline contour

o 3D fields: Extract 2-simplices (triangles) forming a surface mesh

3.6.2 The Marching Algorithm

The marching family of algorithms (marching squares, marching cubes) share a common structure:

1. Discretize the domain into a regular grid of hypercubes
2. Evaluate the scalar field at each grid vertex

47

Phlux Book

3. Classify each cell by which corners are inside (F* < 0) vs outside (F? > 0)
4. Lookup the simplex configuration from a precomputed table
5. Interpolate vertex positions along edges where the isosurface crosses

The key insight is that each cell’s topology depends only on the sign pattern of its corners, not the actual field values. This
reduces the problem to a finite lookup table indexed by a bit pattern.

3.6.3 Hypercube Classification
Each hypercube corner is classified as inside (bit = 1) or outside (bit = 0). The corner bits are packed into an integer index:

index = 3 bit,, - 2" (62)
k=0
Dimension Corners | Index bits Configurations
2D (squares) 4 4 24 =16
3D (cubes) 8 8 28 = 256 (15 unique by symmetry)

The index refers to the bit pattern of the corner classification. For example, in 2D, the index 6 corresponds to the bit pattern
0110, indicating that the 1st and 2nd corners are inside and the 3rd and Oth corners are outside. This, and the remaining
configurations of 4 bits are shown below:

index = 3=, bity, - 2*
23 22

' — o\ /£ o
it l\o —® / o
— 0\5 . o9

/.

72BN RRZ
20 e, - A

® inside outside 8 9 10 11

C/\OCQ

12 13 14 15

Figure 37: Marching squares: (left) cell with corner bit positions, (right) all 16 configurations with inside regions shaded and
contour segments in green.

This process is naturally extended to 3D, where each cell is classified by its 8 corners. In this example, the hypercube is
index 105, corresponding to the bit pattern 01101001, indicating that the Oth, 3rd, 5th, and 6th corners are inside and the
rest are outside. This, and the remaining configurations of 8 bits, deduplicated by symmetries are shown below:

48

Phlux Book

26

25

20 2!

® inside @ outside

Figure 38: Marching cubes: (left) cell with 8 corners labeled by bit position, (right) representative cases showing triangulated
surfaces. The 256 configurations reduce to 15 unique cases by symmetry. Triangulation of the surfaces in the diagram is
elided for visual clarity.

3.6.4 Edge Interpolation
When the isosurface crosses an edge between vertices v, v, with field values f;, fs, linear interpolation locates the crossing
point:

—h
fo=hi

This assumes locally linear field behavior. Higher-order interpolation could improve accuracy but is not yet implemented.

p=v; +t(vy —v;) where t=

(63)

3.6.5 Resolution

The mesh approximation improves with grid resolution, but at increasing computational cost. Doubling resolution quadruples
cell count in 2D and octuples it in 3D.

49

Phlux Book

n=10

0.5+

0.0 4

0.5 4

1.0 4

T
10

T
0.0

n =100

1.0+

0.5

0.0

0.5 4

204

10

0.0

100. Low resolution

produces a coarse approximation; higher resolution captures fine detail.

Figure 39: Effect of grid resolution on mesh extraction. A 12-tooth gear extracted at n = 5,10, 25,

Phlux Book

3.6.6 Algorithms

MARCHINGSQUARES(F*, n,, n,, D):

X% « grid over D with (n, + 1) % (n, + 1) vertices
Vi Fi (Xij) // evaluate field at vertices
segments < ()
for each cell (cx, cy) in grid do
idx 22:0 1{V, < 0}2* // 4-bit classification
edges < EdgeTable[idx]
for each edge pair in edges do

p < Interpolate(vy, vy, Vi, V3)

© 00 N O Ut s W N =

append p to segments

—_
e}

return segments

Algorithm 7: Marching squares extracts a polyline contour from a 2D scalar field.

MARCHINGCUBES(F*, n,, n,, n,, D):
X% ¢ grid over D with (n, + 1) X (n, 4+ 1) X (n, + 1) vertices

Vi Fi(Xij) // evaluate field at vertices

triangles < ()

for each voxel (c,, Cy> c.) in grid do
idx + ZZ:O 1{V, < 0}2* // 8-bit classification
config + TriTable[idx]
for each triangle in config do

for each edge in triangle do

© 00 N O Ut ke W N =

p < Interpolate(vy, vy, Vi, V3)

[y
s}

append triangle to triangles

11 return triangles

Algorithm 8: Marching cubes extracts a triangle mesh from a 3D scalar field.

3.6.6.1 Tensor-Native Implementation

The naive implemenatation of the marching algorithm iterates over hypercubes sequentially. crater.rs exploits tensor
parallelism using convolutions. Instead of looping over cells, a specially constructed convolution kernel extracts all corner
values simultaneously.

3.6.6.1.1 2D: Using convad
A 4-channel kernel K € R**1*2%2 extracts corner values, where each output channel selects one corner via a one-hot 2 x 2
filter. Applying conv2d to the scalar field values produces a tensor containing all corner values for every hypercube:

corners = K * V' — shape 1 x4 xmn, xn, (64)

The cell indices are then computed via weighted sum:

3
idx, ; = > 1{(corners),, < 0} - 2" (65)
k=0
3.6.6.1.2 3D: Using conv3d
An 8-channel kernel K € R8*1%2x2x2 oyxtracts the 8 voxel corners:

Phlux Book
corners = K * V' — shape 1 x 8 x n, xn, xn, (66)

7

idx; ;= Z 1{(corners), < 0} - 2¢ (67)
c=0

3.7 Rescaling Transformations
Rescaling transformations provide mathematically precise control over scalar field output ranges through univariate functions.

Given a scalar field F? : R™*" — R™ a rescaling transformation produces:
G'(z) = n(F'(z)) (68)
where 77 : R — R is a univariate function applied element-wise.

3.7.1 Function Classes

Hyperbolic Tangent Family: Standard and scaled tanh functions
Logistic (Sigmoid) Family: Standard and scaled sigmoid functions
Arctangent Family: Standard and scaled arctan functions

Error Function: Gaussian-like transition with erf approximation
Soft Clipping: Linear preservation with asymptotic bounds

G o=

3.7.2 Properties of Rescaling

1. Isosurface Preservation: If §, = {x : F'(x) = c} is an isosurface of F*, then the transformed field has isosurfaces at n(c)
2. Monotonicity: For strictly monotonic 7, relative ordering of field values is preserved

3. Bounded Output: Many rescaling functions map R to bounded intervals

4. Differentiability: Most rescaling functions are smooth C*°

3.7.3 Rescaling for Ray Cast Stability
Rescaling is crucial for numerical stability in ray casting. Consider f(A) representing the scalar field along a ray. Ray casting
finds a root of f(A) = 0 to tolerance ¢.

The floating point number line is not uniformly distributed—differences between representable numbers increase with
magnitude. For high-gradient fields, no representable A may satisfy tolerance €.

Rescaling maps field values to a closed interval, vertically compressing the field. This ensures at least one \ exists satisfying
the tolerance, and for continuous fields, the converged A is at most one floating point number from the true root.

Phlux Book

no A; i tolerance band

both \; satisfy tolerazice

[_L 1]

|Err(§r| <A — A

Figure 40: Floating point precision and rescaling. Top: a steep field f(A) may have no representable A; within the tolerance
band 4e because floating point gaps widen with magnitude. Bottom: rescaling via n = tanh compresses the field, reducing
the gradient near the root so that at least one A, satisfies the tolerance.

53

Phlux Book

4 XS: Nuclear Cross Section Service

Coming Soon

The xs.rs crate provides nuclear cross section data services for particle transport simulations.

Documentation is under development.

54

Phlux Book

5 Rott: Row-Oriented Tensor Types

Data are considered “Row-oriented” if each row of the dataset is independent from the others. rott.rs enables a “structure-
of-arrays” interface for common operations on row-oriented data. The core abstraction is a Row-Oriented Tensor Type (Rott
- a Rust trait), which owns one or more tensor objects where the Oth dimensions of all tensors are equal.

5.1 Row-Oriented Tensor Type (ROTT)
A Row-Oriented Tensor Type (ROTT) owns one or more tensor objects where the Oth dimensions of all tensors are all equal.

Consider rank-2 tensors (matrices) of the form X% € R™*" representing m independent rows with data dimension n. Such
objects can represent a batch of particle positions or velocities (n = 3), energies (n = 1), and more. While the discussion
herein is limited to tensors of rank 2, this is not a mandate. A Rott may own tensors of any rank > 1.

We collapse these tensors into a compound type, employing a structure-of-arrays approach:
Al = (X YW 7=) (69)

The ith “row” of A’ can be thought of as a slice across the Oth index of all constituent tensors. The ith row is a collection
of tensors, each of which has a rank reduced by 1. This is analogous to slices of single tensors, but extended to a collection
of multiple, related tensors.

The bb notation is used throughout to denote a type as a Rott. Attributes of these objects are notated with the . syntax:
AX (70)

Let’s implement a simple representation of some particles:

#[derive(Clone)]

pub struct ParticleBatch<B: Backend> {
pub positions: Tensor<B, 2>, // [batch, 3]
pub directions: Tensor<B, 2>, // [batch, 3]
pub energies: Tensor<B, 1>, // [batch]

In the above, we associate three tensors: positions, directions, and energies, each of which has their own rank and shape.
A row of this Rott is a triplet of a single particle’s position (3-vector), direction (3-vector), and energy (scalar).
2
(2]

S -&Q &

X &
o ¢ ¢

S S <
) > 2

1(2]|3 1 6 0 1.5
‘0.5|1.5|2.5‘ ‘ 0 | 1 | 0 ‘ 2
2 0 1 6 6 1 0.8

Figure 41: A ParticleBatch with 3 particles. The highlighted row represents a single particle.

The cardinality of such types is equal to the size of the 0-th dimension, notated as |A?|.

let particles: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[1.0, 2.0, 3.0], [0.5, 1.5, 2.5], [2.0, 0.0, 1.0]], device),
directions: Tensor::from floats(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]1,
device,
),
energies: Tensor::from floats([1.5, 2.0, 0.8], device),

Phlux Book

let cardinality = particles.cardinality(); // |P"1| = 3
assert eq!(cardinality, 3);

This patterns enables more than tensor organization; it offers higher-level operations that “feel” like single-tensor operations,
but really act over all constituent tensors.

5.2 Operations on ROTTs

5.2.1 Predicate Notation
Boolean masks are created from predicates using the Iverson bracket [P]. The resulting mask inherits the shape of the
operands in the predicate.

For a predicate P? evaluated element-wise over index i:

(71)

i 1if P? is true
P11

0 if P? is false

The output is a boolean tensor m¢ € {0, 1} where M is the size of the indexed dimension.

let energies: Tensor<B, 1> = Tensor::from floats([0.5, 2.0, 1.5, 0.3], device);

// m~i

= [E”1 > 1.0]
let mask =

energies.greater elem(1.0);

// [false, true, true, false]
let expected: Tensor<B, 1, Bool> =

Tensor::from data(TensorData::from([false, true, true, false]), device);
assert eq! (mask.to data(), expected.to data());

5.2.2 select
Masked selection extracts rows of the Rott into a smaller Rott, according to a mask. Given a mask m® € {0, 1}, the selection
operation for a single tensor X%

X [mz] _ Xtrue(mi)j (72)
where true(mk) = {k cmk = 1} is the set of indices where the mask is true.
The tensor cardinality is reduced:

Al [m]| = D m < |47 (73)

The same operation can be broadcasted over a Rott input:

Allmi] = (X% [mi], Y*[mi], Zi [mi]) (74)

let particles: ParticleBatch = ParticleBatch {
positions: Tensor::from floats(
[

[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[3.0, 0.0, 0.0],
[4.0, 0.0, 0.0],
1,
device,

)
directions: Tensor::from floats(

Phlux Book

1.0, 0.0, 0.0],
0, 1.0, 0.0],
, 0.0, 1.01,
, 0.0, 0.0],
P
device,

)I
energies: Tensor::from floats([0.5, 2.0, 1.5, 0.3], device),

}i

// m*i = [E”1 > 1.0]
let mask = particles.energies.clone().greater elem(1.0);

// P*i[m”~i] -> cardinality reduced from 4 to 2

let selected = particles.select(mask);

assert_eq! (selected.cardinality(), 2);

assert eq!(
selected.energies.to data().to vec::<f32>().unwrap(),
vec![2.0, 1.5]

)

(2]
& O .
X
\’,O & & & & 2
2) e 2O ~ W@
Qo Y < & &
N Q> P < &
IS &) IS
1 0 0 1 0 0 Q > 2
2/0/0||0/1]0 2/0/0| 0|10 l!
select(
3/0(0/ 0|01 3/0(0| 0|01 !li
4 0 0 1 0 0

Figure 42: Masked selection extracts rows where the mask is true, producing a smaller Rott.

5.2.3 mask_where
Masked where selects between two ROTTs element-wise based on a mask:

B if mt =1

mask where(A?, m*, B') = {Ai Fmi— 0

let particles: ParticleBatch = ParticleBatch {
positions: Tensor::from floats(
[
0, 0.0],
0, 0.01,
.0, 0.07,
0, 0.0],

[cNcNoNo]

1,
device,
),
directions: Tensor::from floats(
[
0, 0.0],
0, 0.0],
.0, 0.0],
0, 0.0],

[cNcNoNC]

]I
device,

)I
energies: Tensor::from floats([1.0, 2.0, 3.0, 4.0], device),

Phlux Book

let particles to overwrite: ParticleBatch = ParticleBatch {
positions: Tensor::from floats(
[

[9.0, 9.0, 9.0],
[9.0, 9.0, 9.0],
[9.0, 9.0, 9.0],
[9.0, 9.0, 9.0],
P
device,

),

directions: Tensor::from floats(
[

0, 0.01,

0, 0.01,

.0, 0.0],

0, 0.01,

=R e

]I
device,
)I
energies: Tensor::from floats([1.5, 2.5, 3.5, 4.5], device),

}i

// Mask: overwrite indices 1 and 2
let overwrite: Tensor<B, 1, Bool> = Tensor::from data([false, true, true, false], device);

// Select initial values where mask=false, updated values where mask=true
let result = particles.mask where(overwrite, particles to overwrite);

// Energies: [1.0, 2.5, 3.5, 4.0] - particles 1,2 have new energies, positions and directions
assert eq!(

result.energies.clone().into data().to vec::<f32>().unwrap(),

vec![1.0, 2.5, 3.5, 4.0]
)

2 % 2
A S S S S
4 (“ e o R & B ¢
0 ?/Q ‘&{'\“ QO 6\. Q/Q QO
[1 |e |e\]1 |0| e\ (41 o] 999 0 1 0 15 1lefe] 1
nask where(2 o ,, 9olo|lal1]0) 9909l |0
3 600 10 0 3°1]falolallelz]e]lzs 9/olollo
]4 |0 le‘]1 |0| 0‘ [:] l:l 9 9 9 0 1 0 45 4lo0lel |1

Figure 43: Masked where selects between two ROTTs based on a mask. Rows where m! = 0 come from A?

where m' = 1 come from B’ (cyan).

(green), rows

5.2.4 slice

Slicing extracts a contiguous range of rows from a Rott, returning a smaller Rott:

Aila : b] = Alob) (76)
where a and b are integer bounds with 0 < a < b < |A’|
let particles: ParticleBatch = ParticleBatch {

positions: Tensor::from floats(
[

[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],

Phlux Book

[3.0, 0.0, 0.0],
[4.0, 0.0, 0.0],
]I
device,
)
directions: Tensor::from floats(

[

[1.0, 0.0, 0.0],
, 0.0, 0.0],
, 0.0, 0.0],
.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
1,
device,

)I
energies: Tensor::from floats([1.0, 2.0, 3.0, 4.0, 5.0], device),

};

// P*i[1:4] - extract indices 1, 2, 3
let sliced = particles.slice(1l, 4);

assert_eq!(sliced.cardinality(), 3);

assert _eq!(
sliced.energies.clone().into data().to vec::<f32>().unwrap(),
vec![2.0, 3.0, 4.0]

)

2
. oﬁ\(o 5'QQ & o
g &S & & o
~ < < .0 o X4
& S & o &g
] > @ & @ &
K ;
® 6 06 1 0 0 1 N (¢ &
1(ele|le]|1]e IEI 1|le|le||e]2 IH'
2/o0fe| 0|01 Iil-—+ 2o lo||ofol1
3lelo||1]/ofe||a 3lelo||1]0]e
4 60 0 1 0 5

Figure 44: Slicing extracts a contiguous range of rows (indices 1-3 highlighted) into a new ROTT.

5.2.5 reorder
Reordering permutes rows according to an index tensor:

i

reorder(A?, o%) = A”

where ¢’ is a permutation of indices .

let particles: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0]], device),
directions: Tensor::from floats(
[[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
device,
)I
energies: Tensor::from floats([1.0, 2.0, 3.0], device),
T
// Reorder: reverse the batch
let indices: Tensor<B, 1, Int> = Tensor::from ints([2, 1, O], device);

let reordered = particles.reorder(indices);

assert eq!(reordered.cardinality(), 3);

Phlux Book

assert eq!(
reordered
.energies
.clone()
.into data()
.to vec::<f32>()
.unwrap(),
vec![3.0, 2.0, 1.0]
);

o o
N S @ N S o
Q ~ W< .Q ~ ()
o & & & & &
~ @ < 3 Q <
23 < ¢ . o RS)
o n N o ny &
Q Q> 2 6 Q Q> (2
6 0 0 1 0 1 I!I 2 0606 1 0 0 3
reorder(1 o o 1 0 0 2 ,) — 1 0 0 1 0 0 2
2 606 1 06 @ 3 I:I 6 6 0 1 0 0 1

Figure 45: Reordering permutes rows according to an index tensor o%, here reversing the order with o = [2,1,0].

5.2.6 concat

Concatenation joins multiple ROTTs along the batch dimension:
concat(A?, B") = C* (78)
where |C!| = |AY| + |B|.

let batch a: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], device),
directions: Tensor::from floats([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], device),
energies: Tensor::from floats([1.0, 2.0], device),

let batch b: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], device),
directions: Tensor::from_ floats(
[[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]1,
device,
),
energies: Tensor::from floats([3.0, 4.0, 5.0], device),
Y

// concat(A”i, B~i) - combine batches
let combined = ParticleBatch::concat(&[batch a, batch bl);

assert_eq! (combined.cardinality(), 5);
assert eq!(
combined
.energies
.clone()
.into data()
.to vec::<f32>()
.unwrap(),
vec![1.0, 2.0, 3.0, 4.0, 5.0]
)&

Phlux Book

concat (

AW N = o

Figure 46: Concatenation joins two ROTTs along the batch dimension. Colors show the origin of each row in the result.

5.2.7 concat_bounded
Bounded concatenation combines two ROTTs up to a maximum size, returning any overflow:

concat_bounded(A?, B?, n) = (C*, RY) (79)

where |C?| = min(|A?| + [B|,n) and R contains any remaining elements.

let batch a: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], device),
directions: Tensor::ones([2, 3], device),
energies: Tensor::from floats([1.0, 2.0], device),
g
let batch b: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], device),
directions: Tensor::ones([3, 3], device),
energies: Tensor::from floats([3.0, 4.0, 5.0], device),

}

// Concatenate with max size=4, overflow goes to remainder
let (merged, remainder) = batch a.concat bounded(batch b, 4);

assert eq! (merged.cardinality(), 4);
assert!(remainder.is some());
assert _eq!(remainder.as ref().unwrap().cardinality(), 1);

OQG)
XY
0(,;\’
N
oloe||1
110 0/ 1
0)
o N
4 Q K 2|00 1
S S %
Y & & e 3(ofe||1
~ @ < ()
) <)
L w S < o
R ° ¢ 200 |1 S
y
oloeloel[1]e]e G)\’j«
concat_bounded(, 0l0||1 K S
- 1lelell1lelo N S ¢
4lo0flo| |1
[4efo] [1]o]e] 5]

Figure 47: Bounded concatenation joins two ROTTs along the batch dimension, up to a maximum size. Colors show the
origin of each row in the result.

5.2.8 partition_uniform
Uniform partitioning divides a Rott into smaller Rotts of at most a specified maximum size:

partition_uniform(A?,n) = [Af)", Aﬂf, - A‘,‘c’] (80)

where each |A’]| < n for all j, and all batches except possibly the last have exactly n elements.

61

Phlux Book

let particles: ParticleBatch = ParticleBatch {
positions: Tensor::from floats(

[

[6.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[3.0, 0.0, 0.0],
[4.0, 0.0, 0.0],
P
device,

)I

directions: Tensor::ones([5, 3], device),

energies: Tensor::from floats([1.0, 2.0, 3.0, 4.0, 5.0], device),
};

// Partition into batches of at most 2
let batches = particles.partition uniform(2);

assert eq! (batches.num rotts(), 3); // [2, 2,
assert_eq! (batches.rotts()[0].cardinality(), 2
assert eq!(batches.rotts()[1].cardinality(), 2
assert_eq! (batches.rotts()[2].cardinality(), 1

1]
)i
)
)

2
ok‘(o S &
~ x> N
“ X O Oy
4 Q a2 Q <
& N 2 N WS &
X & & N ¢)
& & 2lefo|[1]1]a][3]
] 1\
1011
elo|e||1/1]1 3[e]® o
1/efe|[2f2]2 & S
. s
Ly . &'y Cg, Q'y
partition uniform(|2|oe |06 | 1 /1|1 o & &
3/e /60| |1/1]1 $ 4 &
40 0 |1 1 1 40/ 0 |11 1 |5

Figure 48: Splitting divides a ROTT into chunks of at most n rows. Colors indicate which chunk each row belongs to.

5.2.9 partition_by_labels

Label-based partitioning groups elements by integer labels:
partition_by labels(A?, £¢) = [AY, A}, ..., A%] (81)

where each Ag- contains all elements with label j.

62

Phlux Book

2]
& S
N XY N
o C S
) &)
) i~ &
Q < 2
elole||1]1]1 l!l
2|ele||1]1]2 IHI
>y
& S o
o XY ~
o & N ¢ O
<
N 3 &) §5 2
& S & < SO

partition by labels(

A W N R O
© © © o ©
=
(=
R

Figure 49: Partitioning by labels groups rows with matching labels into separate ROTTs.

let particles: ParticleBatch = ParticleBatch {
positions: Tensor::from floats(

[

[06.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[3.0, 0.0, 0.0],
[4.0, 0.0, 0.0],
1,
device,

)I

directions: Tensor::ones([5, 3], device),

energies: Tensor::from floats([1.0, 2.0, 3.0, 4.0, 5.0], device),
Irg

// Labels: cell IDs for each particle
let cell ids: Tensor<B, 1, Int> = Tensor::from ints([0, 1, O, 2, 1], device);

// Partition by cell ID
let batches = particles.partition by labels(cell ids);

assert_eq! (batches.num rotts(), 3); // 3 unique labels

5.3 The Rotts Struct

The Rotts struct provides a collection abstraction over multiple Rotts, enabling iteration over the batches.

A Rotts wraps a vector of ROTTs and provides parallel iterators and batch operations. Domain-specific collections like
Particles and Events are type aliases for Rotts:

/// A collection of particle batches - type alias for Rotts.
pub type Particles = Rotts<B, ParticleBatch>;

Concretely, one can initialize a Rotts with a vector of Rotts:

let batch a: ParticleBatch = ParticleBatch {
positions: Tensor::from floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0]], device),
directions: Tensor::ones([3, 3], device),
energies: Tensor::from floats([1.0, 2.0, 3.0], device),

63

+i

let batch b: ParticleBatch = ParticleBatch {
positions: Tensor::from_floats([[3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], device),
directions: Tensor::ones([2, 3], device),
energies: Tensor::from floats([4.0, 5.0], device),

let batch _c: ParticleBatch = ParticleBatch {
positions: Tensor::from floats(

[

[5.0, 0.0, 0.0],
[6.0, 0.0, 0.0],
[7.0, 0.0, 0.0],
[8.0, 0.0, 0.0],
1,
device,

)I
directions: Tensor::ones([4, 3], device),
energies: Tensor::from floats([6.0, 7.0, 8.0, 9.0], device),

}i
let particles = Rotts::new(vec![batch a, batch b, batch c]);

assert_eq! (particles.num rotts(), 3); // 3 batches
assert eq!(particles.cardinality(), 9); // 9 total particles

5.3.1 map
The map method applies a function to each ROTT in parallel, collecting results:

let particles: Particles = Rotts::new(vec![
ParticleBatch {

directions: Tensor::ones([3, 3], device),
energies: Tensor::from floats([1.0, 2.0, 3.0], device),
}
ParticleBatch {
positions: Tensor::from floats([[3., 0., 0.1, [4., 0., 0.]], device),
directions: Tensor::ones([2, 3], device),
energies: Tensor::from floats([4.0, 5.0], device),
+
ParticleBatch {
positions: Tensor::from floats(
[(5., 0., 0.1, [6., 0., 0.1, [7., 0., 0.], [8., 0., 0.11,
device,
)
directions: Tensor::ones([4, 3], device),
energies: Tensor::from_floats([6.0, 7.0, 8.0, 9.0], device),
+
1);

// Compute total energy per batch (in parallel)

let energies: Vec<f32> =

// batch a: 1+2+3=6, batch b: 4+5=9, batch c: 6+7+8+9=30
assert eq!(energies, vec![6.0, 9.0, 30.0]);

5.3.2 filter

positions: Tensor::from floats([[0., 0., 0.], [1., 0., 0.], [2., 0., 0.]1], device),

particles.map(|batch| batch.energies.clone().sum().into scalar().elem::<f32>());

Phlux Book

The filter method applies a mask-generating function to each ROTT in parallel, selecting elements within each batch:

64

Phlux Book

let particles: Particles = Rotts::new(vec![

ParticleBatch {
positions: Tensor::from_ floats([[0., 0., 0.], [1., 0., 0.1, [2., 0., 0.]], device),
directions: Tensor::ones([3, 3], device),
energies: Tensor::from floats([1.0, 2.0, 3.0], device),

Bo

ParticleBatch {
positions: Tensor::from floats([[3., 0., 0.], [4., 0., 0.]], device),
directions: Tensor::ones([2, 3], device),
energies: Tensor::from floats([4.0, 5.0], device),

|

ParticleBatch {
positions: Tensor::from floats(

[(5., 0., 0.1, [6., 0., 0.1, [7., 0., 0.1, [8., 0., 0.11,
device,

Do
directions: Tensor::ones([4, 3], device),
energies: Tensor::from floats([6.0, 7.0, 8.0, 9.0], device),

I

1);

// Filter particles with energy > 1.5 from each batch (in parallel)
let high energy = particles.filter(|batch| batch.energies.clone().greater elem(1.5));

// batch a: [2,3] -> 2, batch b: [4,5] -> 2, batch c: [6,7,8,9] -> 4 = 8 total
assert!(high energy.is some());
assert _eq!(high_energy.as ref().unwrap().cardinality(), 8);
let energies: Vec<Vec<f32>> = high energy
.as_ref()
.unwrap ()
.rotts()
.iter()
.map(|b| b.energies.to data().to vec::<f32>().unwrap())
.collect();
assert eq!(
energies,
vec![vec![2.0, 3.0], vec![4.0, 5.0], vec![6.0, 7.0, 8.0, 9.0]]
);

65

Phlux Book

6 Roam: Discrete Stochastic Processes

6.1 Stochastic Processes

A discrete stochastic process, M(d), is a sequence of states indexed by an integer parameter d. This is the process depth,
or the number of steps that have occurred since the initial state, M(0). The states can be any type: a scalar m(d), vector
mt(d), tensor M%(d), or more exotic types like Rott implementers or Rotts collections (see Chapter 5).

These processes can be memory-less, meaning M(d) depends on M(d — 1) and system hyperparameters, only. Such processes
are called Markov processes. Non-Markov processes may depend on the full history [M(0),M(1),...,M(d — 1)], enabling
phenomena like reinforcement, lock-in dynamics, or path-dependent behavior.

6.2 The Stepper Trait
The core abstraction in roam.rs is the Stepper trait. Implementers compute new states T from the history of previous states
&[T], and a handle to an Rng.

pub trait Stepper<T, R: Rng> {
type Error;

/// Compute next state from history " [M(0), ..., M(d)]"
fn step(&self, history: &[T], rng: &mut R) -> Result<T, Self::Error>;

The step method enables the discrete stochasticity: given the full history of the process [M(0),...,M(d)] and a randomness
source, produce the next state M(d + 1) or signal a terminal condition via the error type.

6.3 Trajectories

The Trajectory struct manages a sequence of states with automatic history:

use rand::SeedableRng;
use rand::rngs::StdRng;
use roam::{Stepper, Trajectory};

struct CountingStepper;

impl<R: Rng> Stepper<usize, R> for CountingStepper {
type Error = Infallible;

fn step(&self, history: &[usizel, rng: &mut R) -> Result<usize, Self::Error> {
Ok (history.len())
}
}

let mut rng = StdRng::seed from u64(42);
let mut traj: Trajectory<usize, StdRng, > = Trajectory::new(0, CountingStepper);

// Step through the process
traj.step(&mut rng).unwrap();
assert eq!(traj.depth(), 1);
assert eq! (*traj.current(), 1);

// Run for a fixed number of steps
traj.run bounded (10, &mut rng).unwrap();
assert eq!(traj.depth(), 11);

// Access state history

66

assert eq!(traj.states().len(), 12);

assert eq! (*traj.state at(5).unwrap(), 5);
A Trajectory stores all states internally: [M(0), M(1), ..., M(d)].
6.4 Basic Markov Examples

6.4.1 The Trivial Stepper

The simplest possible Stepper does nothing. It always returns the initial state:
M(d) = M(0) Vd

/// A trivial stepper that always returns the initial state.

11/

pub struct TrivialStepper;

impl<T: Clone, R: Rng> roam::Stepper<T, R> for TrivialStepper {

type Error = Infallible;

Ok (history.first().unwrap().clone())
}
}

fn trivial stepper example() {
let mut rng = StdRng::seed from u64(42);
traj.run bounded(100, &mut rng).unwrap();

// All states equal the initial value
assert!(traj.states().iter().all(]|&s]| s == 1.0));

/// This is the simplest possible stepper: $bb(M)(d) = bb(M)(0)$ for all ds.

fn step(&self, history: &[T], _rng: &mut R) -> Result<T, Self::Error> {

let mut traj: Trajectory<f64, StdRng, > = Trajectory::new(1.0, TrivialStepper);

Phlux Book

(82)

67

Phlux Book

So=0.5
n= 500
s
=
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

d

Figure 50: Trivial stepper trajectories. All remain constant at M(0).

6.4.2 A Counting Stepper
A slightly more interesting example: a counting stepper that returns the current depth:

M(d) = d (83)

/// A counting stepper that returns the current depth.

///

/// At each step, returns d (the number of steps taken).
pub struct CountingStepper;

impl<R: Rng> roam::Stepper<usize, R> for CountingStepper {
type Error = Infallible;

fn step(&self, history: &[usizel, rng: &mut R) -> Result<usize, Self::Error> {
Ok (history.len())
}
}

fn counting stepper example() {
let mut rng = StdRng::seed from u64(42);
let mut traj: Trajectory<usize, StdRng, > = Trajectory::new(0, CountingStepper);

traj.run bounded(10, &mut rng).unwrap();

// States are [0, 1, 2, ..., 10]
assert_eq!(traj.states(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

68

Phlux Book

20.0 4 n = 500

steps =
15.0 4
210.04

=
5.0 1
0.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
d

Figure 51: Counting stepper: all trajectories follow the same deterministic path M(d) = d.

6.4.3 Closure-Based Steppers
For quick prototyping, FnStepper wraps a closure as a stepper:

use rand::SeedableRng;
use rand::rngs::StdRng;
use roam::{Trajectory, stepper};

let step fn = |history: &[i32], rng: &mut StdRng| {
let current = *history.last().unwrap();

Ok::< , Infallible>(current + rng.random range(0..=1))

};

let mut rng = StdRng::seed from u64(42);
let mut traj = Trajectory::new(0, stepper(step fn));

traj.run bounded(10, &mut rng).unwrap();

assert eq!(traj.depth(), 10);

The stepper() function is a convenience constructor for FnStepper.

6.4.4 Geometric Brownian Motion
As a pedagogical example, consider Geometric Brownian Motion (GBM), a discrete-time stochastic process commonly used
to model stock prices and other financial quantities. The process evolves according to:

s(0) = s,
2

s(d+1) = s(d) - exp l (u — (’7) At + a\/xtz(d)] (54

where s is the initial value, u is the drift rate, o is the volatility, At is the time step size, and z(d) ~ N(0,1) is a standard
normal random variable.

69

This is a Markov process; s(d + 1) depends only on s(d) and the random draw z(d), not on any earlier history.

We define the process as follows:

/// State for geometric Brownian motion.
#[derive(Clone, Debug)]
pub struct GBMState {

pub value: f64,

pub time: f64,

/// Standard GBM stepper (Markov).
pub struct GBM {

pub drift: f64,

pub volatility: f64,

pub dt: f64,
}

impl<R: Rng> Stepper<GBMState, R> for GBM {
type Error = &'static str;

fn step(&self, history: &[GBMStatel, rng: &mut R)
let state = history.last().unwrap();

if state.value <= 0.0 {
return Err("value became non-positive");

}

Ok (GBMState {
value: new value,
time: state.time + self.dt,

}

Simulation is done using the Trajectory API:

use rand::SeedableRng;
use rand::rngs::StdRng;
use roam::Trajectory;

let mut rng = StdRng::seed from u64(42);
let gbm = GBM {

drift: 0.05,

volatility: 0.2,

dt: 1.0 / 252.0, // Daily steps

-> Result<GBMState, Self::Error> {

let z = Normal::new(0.0, 1.0).unwrap().sample(rng);

// S(t+1) = S(t) * exp((n - 02/2)At + oVAt * Z)

let drift term = (self.drift - 0.5 * self.volatility.powi(2)) * self.dt;
let diffusion term = self.volatility * self.dt.sqrt() * z;

let new value = state.value * (drift term + diffusion_ term).exp();

Irg
let mut traj: Trajectory<GBMState, StdRng, > = Trajectory::new(
GBMState {
value: 100.0,

Phlux Book

70

Phlux Book

time: 0.0,
Fo
gbm,
)i

// Simulate one trading year (252 days)
traj.run bounded(252, &mut rng).unwrap();

assert eq!(traj.depth(), 252);
assert!(traj.current().value > 0.0);

u=0.05
g = 0.05
45 | At=1.0
n = 500

5.0 4

4.0+

354

3.0+

M(d)
M(d)

0.5+

U:U 2:0 4:0 E.‘U B.‘U 16.0 12‘.0 14‘.0 1é.U lé.U ZUI.U 0.0 2.‘0 4:0 6:0 B.‘U ld.U 12‘.0 14‘.0 1é.0 lé.U 26.0
d d
25.04
9.0 u=0.05 u=0.05
0=0.10 0=0.20
804 At=1.0 At=1.0
20.04
n =500 n = 500
7.0
604 15.0
3 >0 3
= =
10.04

4.0 4

0.0+

T T T T T T T T T T 1 T T T T T T T T T T 1
0.0 20 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 140 16.0 18.0 20.0
d d

Figure 52: GBM trajectories with varying volatility o. As volatility increases, the spread of possible outcomes widens
dramatically. Each panel shows 500 traces with mean (dark line) and +1¢ band (shaded).

6.5 Basic Non-Markov Examples

6.5.1 P6lya Urn Model
The Pélya urn is a classic model demonstrating rich-get-richer dynamics. An urn starts with one red and one blue ball. At

each step:
1. Draw a ball uniformly at random
2. Return it along with one additional ball of the same color

The fraction of red balls converges to a limit, but that limit depends entirely on the random trajectory; different runs lock
into different attractors, depending on their early behavior.

71

Below we define the internal state of the urn:

/// State for the Pélya urn model.
#[derive(Clone, Debug)]
pub struct UrnState {
pub red: u32,
pub blue: u32,
}

impl UrnState {
pub fn new(red: u32, blue: u32) -> Self {
Self { red, blue }
}

pub fn fraction red(&self) -> f64 {
self.red as f64 / (self.red + self.blue) as f64
}

Using this, we implement Stepper:

/// Pbélya urn stepper (non-Markov).
///

pub struct PolyaUrn;

impl<R: Rng> Stepper<UrnState, R> for PolyaUrn {
type Error = Infallible;

let state = history.last().unwrap();
let total = state.red + state.blue;

// Draw proportional to current counts
if rng.random ratio(state.red, total) {
Ok(UrnState {
red: state.red + 1,
blue: state.blue,
1)
} else {
Ok(UrnState {
red: state.red,
blue: state.blue + 1,
1)

Finally, we can sample random trajectories through this space as follows:

let mut rng = StdRng::seed from u64(42);

let mut traj: Trajectory<UrnState, StdRng, > = Trajectory::new(
UrnState::new(1l, 1), // Start with 1 red, 1 blue
PolyaUrn,

);

traj.run bounded(10, &mut rng).unwrap();

Extending into deeper depths, we see the convergent behavior emerge:

/// Draw a ball proportional to counts, return it with one more of the same color.

fn step(&self, history: &[UrnStatel, rng: &mut R) -> Result<UrnState, Self::Error> {

Phlux Book

72

Phlux Book

let mut rng = StdRng::seed from u64(42);

let mut traj: Trajectory<UrnState, StdRng, > = Trajectory::new(
UrnState::new(1, 1), // Start with 1 red, 1 blue
PolyaUrn,

)5

traj.run bounded (100, &mut rng).unwrap();
// Fraction converges to some limit (path-dependent!)

let final fraction = traj.current().fraction red();
assert!(final fraction > 0.0 & final fraction < 1.0);

1.0+

1.0 4

0.9+
0.9+

o

0.8+
0.8+

@

0.7 4
0.

~

0.6 4

o

0.5 + 0.5 4

M(d)
M(d)
wn

S

w

~

\\\‘\“\\%\%ﬁf‘}:‘f—s ——
e
milomess
IR SRR eSSt
s
Qi
031 ' ' " ""’"‘Q:'%’%"o. 232
Wi
1 ,' "'h’h’f""% T R e e
e

0.14

0.1+

0.0+

0.0 4 T T T T T T T T T ! T T T T T T T T T T]
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
d d

Figure 53: 500 Pélya urn trajectories showing fraction of red balls over time. Left: in early depths, samples greatly inflnence
long-term behavior. Right: trajectories converge to common attractors. Notice that the mean remains 0.5 and the variance
stabilizes.

6.6 Tensor States: The Ising Model

The Ising model demonstrates how roam.rs handles tensor-valued states using Burn Tensors as states. In the Ising model, a
2D lattice of spins evolves via Metropolis dynamics. The lattice is defined as:

S ={-1,+1}V(z,y) (85)

Each location in the lattice is spin up or spin down. Each lattice location randomly updates according to the spins of its
neighbors.

6.6.1 Standard Ising Model (Markov)
The energy of a standard Ising model configuration is:

E=-J) s;s; (86)

(4,9)

where the sum runs over nearest-neighbor pairs and J is the coupling constant. The Metropolis algorithm proposes spin flips
and accepts them with probability:

P(accept) = min(1,exp(—AE/T)) (87)

The state of the Ising model is implemented as below:

73

Phlux Book

/// State for 2D Ising spin lattice using burn tensors.
///
/// Spins are stored as a 2D tensor with values +1 or -1 (as floats for GPU ops).
#[derive(Clone)]
pub struct SpinLattice<B: Backend> {
pub spins: Tensor<B, 2>,
pub size: usize,

}

impl<B: Backend> SpinLattice {
/// Create a new lattice with random spins.
pub fn random(size: usize, device: &B::Device) -> Self {
// Generate random values in [0, 1), convert to 1
let random = Tensor::<B, 2>::random(
[size, sizel,
burn::tensor::Distribution::Uniform(0.0, 1.0),
device,
D3
let threshold = Tensor::<B, 2>::full([size, size], 0.5, device);
let mask = random.lower(threshold);
let ones = Tensor::<B, 2>::ones([size, size], device);
let neg ones = ones.clone().neg();
let spins = mask.clone().float() * neg ones + mask.bool not().float() * ones;
Self { spins, size }

/// Create a lattice with all spins up.

pub fn all up(size: usize, device: &B::Device) -> Self {
let spins = Tensor::<B, 2>::ones([size, size], device);
Self { spins, size }

/// Compute total magnetization.
pub fn magnetization(&self) -> 32 {
self.spins.clone().sum().into scalar().elem()

/// Compute magnetization per spin.
pub fn magnetization per spin(&self) -> f64 {
self.magnetization() as f64 / (self.size * self.size) as f64

/// Convert to Vec<Vec<i8>> for visualization.
pub fn to vec(&self) -> Vec<Vec<i8>> {
let data = self.spins.clone().into data();
let flat: Vec<f32> = data.to vec().unwrap();
flat.chunks(self.size)
.map(|row| {

row.iter()
.map(|&v]| if v > 0.0 { 1i8 } else { -1i8 })
.collect()
1)
.collect()

}

/// Get the device this lattice is on.
pub fn device(&self) -> B::Device {
self.spins.device()

}

4

Phlux Book

The Stepper uses conv2d for efficient neighbor sum computation and checkerboard updates to avoid updating neighbors

inconsitently across the lattice:

/// Standard Ising model stepper using burn tensors (Markov).
///
/// Uses parallel Metropolis updates on the full lattice each step.
/// Neighbor sums computed via conv2d for GPU efficiency.
pub struct IsingModel<B: Backend> {
pub temperature: f64,
pub coupling: f64,
_phantom: PhantomData,

}

impl<B: Backend> IsingModel {
pub fn new(temperature: f64, coupling: f64) -> Self {
Self {
temperature,
coupling,
_phantom: PhantomData,

/// Compute sum of four neighbors using conv2d with a cross kernel.

/// The kernel [[0,1,0], [1,0,1], [0,1,0]] sums the 4 neighbors.

pub fn neighbor sum(spins: &Tensor<B, 2>, device: &B::Device) -> Tensor<B, 2> {
use burn::tensor::module::conv2d;
use burn::tensor::ops::ConvOptions;

let [rows, cols] = spins.dims();

// Cross kernel: sums up, down, left, right neighbors

let kernel data: [f32; 9] = [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0];

// [out channels, in channels, h, w]

let kernel = Tensor::<B, 1>::from_floats(kernel data, device).reshape([1l, 1, 3, 31);

// Use circular padding by manually wrapping edges

let top = spins.clone().narrow(0, rows - 1, 1);

let bottom = spins.clone().narrow(0, 0, 1);

let padded v = Tensor::cat(vec![top, spins.clone(), bottom], 0);

let left = padded v.clone().narrow(l, cols - 1, 1);
let right = padded v.clone().narrow(1l, 0, 1);
let padded = Tensor::cat(vec![left, padded v, right], 1);

let padded 4d = padded.reshape([1l, 1, rows + 2, cols + 2]);

// Conv2d with no padding (we already padded manually for circular boundaries)
let options = ConvOptions::new([1, 11, [0, 0], [1, 11, 1);
let result = conv2d(padded 4d, kernel, None, options);

result.reshape([rows, cols])

/// Generate random tensor from external RNG for reproducibility.

pub fn random tensor<R: Rng>(size: usize, rng: &mut R, device: &B::Device) -> Tensor<B, 2> {
let data: Vec<f32> = (0..size * size).map(|_| rng.random::<f32>()).collect();
Tensor::<B, 1>::from floats(&data[..], device).reshape([size, size])

/// Create a checkerboard mask for the given parity.
pub fn checkerboard mask(size: usize, parity: bool, device: &B::Device) -> Tensor<B, 2> {
let mut data = vec![0.0f32; size * size];

5

Phlux Book

for i in 0..size {
for j in 0..size {
if ((1 + j) % 2 == 0) == parity {
data[i * size + j] = 1.0;
}
}
)

Tensor::<B, 1>::from floats(&datal..], device).reshape([size, size])

The Stepper implementation performs the Metropolis updates:

impl<B: Backend, R: Rng> Stepper<SpinLattice, R> for IsingModel {
type Error = Infallible;

fn step(&self, history: &[SpinLattice], rng: &mut R) -> Result<SpinLattice, Self::Error> {
let state = history.last().unwrap();
let device = state.device();
let mut spins = state.spins.clone();

// Checkerboard decomposition: update black squares, then white squares
// This ensures correct parallel Metropolis (neighbors don't change during update)
for parity in [true, false] {

// Compute neighbor sums

let neighbors = Self::neighbor sum(&spins, &device);

// Energy change if we flip: AE = 2 * J * s i * ¥ neighbors
let delta_e = spins
.clone()
.mul scalar(2.0 * self.coupling as f32)
.mul(neighbors);

// Acceptance probability: min(1, exp(-AE/T))
let neg delta e over t = delta_e.neg().div_scalar(self.temperature as f32);
let accept _prob = neg delta e over t.exp().clamp max(1.0);

// Generate random numbers
let random = Self::random tensor(state.size, rng, &device);

// Accept where random < accept prob
let accept mask = random.lower(accept prob);

// Apply checkerboard mask (only update one color)
let checker = Self::checkerboard mask(state.size, parity, &device);
let update mask = accept mask.float().mul(checker).bool();

// Flip accepted spins

let flipped = spins.clone().neg();

spins = update mask.clone().float() * flipped + update mask.bool not().float() * spins;
}

Ok (SpinLattice {
spins,
size: state.size,

1)

76

Phlux Book

T =2.27

Figure 54: Ising model at different temperatures. Left: ordered phase with large coherent domains. Center: critical point with
fractal structure. Right: disordered phase with random spins.

6.6.2 Magnetic Memory Ising (Non-Markov)

To demonstrate non-Markov dynamics with tensor states, we extend the Ising model with magnetic memory. The flip
acceptance probability is biased by the historical average magnetization:

P(accept) = min(l, exp (— (AE — st’)/T)) (88)

where M is the average magnetization over recent history and w is the memory weight. This creates “momentum” in the
magnetization dynamics; the system resists flipping away from its historical trend.

/// Ising model with magnetic memory using burn tensors (non-Markov).
/77
/// Flip acceptance depends on historical magnetization, creating "momentum".
/// Spins that align with the historical magnetization trend are favored.
pub struct MagneticMemoryIsing<B: Backend> {
pub temperature: f64,
pub coupling: f64,
pub memory weight: f64,
_phantom: PhantomData,

}

impl<B: Backend> MagneticMemoryIsing {
pub fn new(temperature: f64, coupling: f64, memory weight: f64) -> Self {
Self {
temperature,
coupling,
memory weight,
_phantom: PhantomData,

The Stepper implementation biases acceptance by historical magnetization:
impl<B: Backend, R: Rng> Stepper<SpinLattice, R> for MagneticMemoryIsing {
type Error = Infallible;

fn step(&self, history: &[SpinLattice], rng: &mut R) -> Result<SpinLattice, Self::Error> {
let state = history.last().unwrap();

7

Phlux Book

let device = state.device();
let mut spins = state.spins.clone();

// Compute historical average magnetization (last 10 states or all if fewer)
let window start = history.len().saturating sub(10);
let avg mag: f64 = history[window start..]

.iter()

.map(|s| s.magnetization per spin())

.sum: :<f64>()

/ (history.len() - window start) as f64;

// Checkerboard decomposition for correct parallel Metropolis
for parity in [true, false] {
// Compute neighbor sums
let neighbors = IsingModel: :::neighbor sum(&spins, &device);

// Energy change if we flip: AE = 2 * J * s i * ¥ neighbors
let delta_e = spins
.clone()
.mul scalar(2.0 * self.coupling as f32)
.mul(neighbors);

// Proposed spins (flipped)
let proposed = spins.clone().neg();

// Memory bias: favor flips that align with historical magnetization trend
let memory bias = proposed

.clone()

.mul scalar(self.memory weight as f32 * avg mag as f32);

// Effective energy change
let effective delta e = delta e.sub(memory bias);

// Acceptance probability: min(1, exp(-AE eff/T))
let neg delta e over t = effective delta e.neg().div scalar(self.temperature as f32);
let accept prob = neg delta e over t.exp().clamp max(1.0);

// Generate random numbers
let random = IsingModel::::random tensor(state.size, rng, &device);

// Accept where random < accept prob
let accept mask = random.lower(accept prob);

// Apply checkerboard mask
let checker = IsingModel::::checkerboard mask(state.size, parity, &device);
let update mask = accept mask.float().mul(checker).bool();

// Flip accepted spins
spins = update mask.clone().float() * proposed + update mask.bool not().float() * spins;

}

Ok(SpinLattice {
spins,
size: state.size,

}

78

Phlux Book

Figure 55: Magnetic memory Ising at T' = 2.5 with varying memory weight w. Left: no memory (standard Ising). Center/
Right: increasing memory strength creates more coherent domain structures as the system develops “momentum” in its
magnetization.

6.7 Error-Based Termination

Steppers can signal terminal conditions by returning an error. The run() method continues until an error is returned:

struct TerminatingStepper { max_depth: usize }

impl<R: Rng> Stepper<usize, R> for TerminatingStepper {
type Error = &'static str;

fn step(&self, history: &[usize], rng: &mut R) -> Result<usize, Self::Error> {
if history.len() >= self.max depth {
Err("max depth reached")
} else {
Ok(history.len())
}

}

// Usage

let mut traj = Trajectory::new(0, TerminatingStepper { max depth: 100 });
let result = traj.run(&mut rng);

assert!(result.is err());

assert eq!(traj.depth(), 99);

This pattern is useful for:

o Absorbing states (particle absorbed, process terminates)
o Boundary conditions (value exceeds threshold)

o Convergence criteria (change falls below tolerance)

7 Phlux Viewer

The Phlux Viewer is a GPU-accelerated visualization application for exploring particle transport simulation results stored
in .phlux archives.

7.1 Loading .phlux Files
Archives are loaded through the phlux API:

79

Phlux Book

phiux |— (S]—

|
\ |

GPU rendering C OIlVC‘l"tC‘dDﬂt a)) R queries
Vec<GpuEvent> EventFrame, ParticleFrame

[wgpu::Buffer] [Observables]

GPU vertex data measure()

Figure 56: Loading pipeline: .phlux — Session — SessionData — TransportData — observables.

Session::load() extracts the archive to a temp directory, reads the manifest, and loads Parquet data into Polars DataFrames.
SessionData provides access to transport data by ID. TransportData exposes EventFrame and ParticleFrame for querying,

and the measure() method for computing observables.

7.2 User Interface

The viewer displays a 3D scene with a sidebar of interactive charts:

’

k-eff, counts

Time

[T —

SceneRenderer

3D viewport

Depth

A T

Convergence

\. J

Figure 57: Ul layout: 3D viewport with histogram sidebar. Each HistogramChart has a RangeSelection overlay for filtering.

3D Viewport — SceneRenderer renders particle tracks and collision events. Filtering happens in WGSL shaders via
GpuFilterSettings uniforms.

Histogram Charts — Three HistogramChart widgets display time, energy, and depth distributions. Each chart has a
RangeSelection overlay that users drag to define filter bounds.

drag handles HistogramChart

unfiltered
[filtered

Figure 58: Dual-histogram rendering: background shows full distribution, foreground shows events passing all cross-filters.
Foreground bars are shorter due to filtering from other histograms.

Each histogram renders two layers: a light background showing the full distribution, and a colored foreground showing events
passing all active filters. Because filters cross-apply, the foreground bars may be shorter than the background even within
the selection bounds—events excluded by other histograms (e.g., energy filter) reduce counts in this histogram (e.g., time).
This dual-layer approach lets users see both the overall data shape and the effect of their combined filter selections.

Convergence Chart — ConvergenceChart displays k-effective and Shannon entropy versus collision depth.

80

Phlux Book

7.3 Filter Bifurcation

ViewerFilter is the single source of truth for filter state. It bifurcates to two consumers:

ViewerFilter

impl FilterEvents
impl FilterParticles
|
Yy A 4
sync__to__gpu() commit__filter()

every frame on release

| |

GpuFilterSettings QueryManager
WGSL uniform buffer EventFrame.filter()
— SceneRenderer ParticleFrame.filter()
3D Scene Histogram
shader-side filtering recomputed distributions|

Figure 59: Filter bifurcation: ViewerFilter feeds both GPU rendering (immediate) and backend queries (debounced).

GPU Path — sync_to gpu() converts ViewerFilter to GpuFilterSettings and uploads to the uniform buffer every frame
during drag. WGSL shaders discard fragments outside filter bounds for immediate visual feedback.

Backend Path — commit filter() triggers QueryManager to recompute histograms on selection release. The query
applies ViewerFilter via EventFrame.filter() and ParticleFrame.filter() (Polars lazy expressions), then bins results into

Histogram distributions.

81

Phlux Book

8 Appendix

8.1 Citation

When using phlux.rs in academic work, please cite:

@software{phlux.rs,
title={phlux.rs: Monte Carlo N-Particle Transport Framework},
author={Huibregtse, Clyde},
year={2026},
url={https://gitlab.com/soho-labs/phlux.rs}

8.2 Contributing

8.2.1 Quick Start

Install developer tools:

cargo install --path phlux-tools

8.2.2 Commit Message Format

We use Conventional Commits with the format:

type(scope): description

8.2.2.1 Examples

feat(phlux): add particle tracking system
fix(crater): resolve memory leak in mesh generation
docs(xs): update API documentation

perf(phlux): optimize particle tracking loop
refactor(workspace): consolidate shared dependencies

8.2.3 Development Workflow
Before committing:

Format code
cargo fmt --all

Run linting
cargo clippy --workspace --all-targets -- -D warnings

Validate a commit message
echo "feat(phlux): add new feature" | phlux-tools commit-check --stdin

8.2.4 Getting Help

e View phlux-tools commands: phlux-tools --help
e View commit schema: phlux-tools commit-schema --show
o Report issues: https://gitlab.com/soho-labs/phlux.rs/-/issues

82

https://gitlab.com/soho-labs/phlux.rs/-/issues

	1 Foreword
	1.1 Workspace Breakdown
	1.2 Quick Links
	1.2.1 Demos
	1.2.2 Resources

	1.3 Notation
	1.3.1 General Tensor Notation

	2 Phlux: Transport Theory
	2.1 Transport as a Stochastic Process
	2.1.1 Particles and Events: Structures-of-Arrays

	2.2 The Transport Operator
	2.2.1 Cell Identification
	2.2.2 Homogenization
	2.2.3 Batched Particle Casting
	2.2.4 Progeny Sampling

	2.3 The Storage Backend
	2.3.1 Data Flow
	2.3.2 TableStorage
	2.3.3 GraphStorage

	2.4 Observables
	2.4.1 The Observable Integral
	2.4.1.1 Tensor-Valued Response Functions

	2.4.2 The Observable Pipeline
	2.4.3 Measurements
	2.4.4 Filters
	2.4.5 Response Functions
	2.4.6 The Frame API
	2.4.6.1 EventFrame
	2.4.6.2 ParticleFrame

	2.4.7 Canonical Observables
	2.4.7.1 Count (Scalar)
	2.4.7.2 K-Effective (Scalar Ratio)
	2.4.7.3 Cell Flux (Vector)
	2.4.7.4 Energy Spectrum (Histogram)
	2.4.7.5 Spatial Flux (SpatialMesh)

	2.5 Transport as a Genealogy
	2.5.1 A Genealogical View on Criticality

	3 Crater: Constructive Solid Geometry
	3.1 Scalar Fields
	3.1.1 Batch Evaluation

	3.2 Regions
	3.2.1 Constructive Solid Geometry
	3.2.1.1 Algebras
	3.2.1.1.0.1 Differentiable Algebras
	3.2.1.1.0.2 Blending

	3.2.2 Primitives

	3.3 Transformations
	3.3.1 Translation
	3.3.2 Scaling
	3.3.3 Rotation
	3.3.4 Non-standard Transformations

	3.4 Ray Casting
	3.4.1 Analytical Method
	3.4.1.1 Hyperplanes
	3.4.1.2 Hyperspheres
	3.4.1.3 Hypercones
	3.4.1.4 Hypercylinders
	3.4.1.5 Composite CSG Regions

	3.4.2 Bracket and Bisect Algorithm
	3.4.2.1 Ray Bracketing
	3.4.2.2 Ray Bisection

	3.4.3 Newton's Method

	3.5 Analysis Modules
	3.5.1 Volume Estimation (Monte Carlo)
	3.5.1.1 Error Analysis

	3.5.2 Gradient Computation
	3.5.2.1 Surface Normals

	3.5.3 Gradient Descent
	3.5.4 Root Finding (Newton's Method)
	3.5.5 Adaptive Bounding
	3.5.5.1 Cell Classification
	3.5.5.2 Subdivision Scheme
	3.5.5.3 Algorithm

	3.6 Mesh Extraction
	3.6.1 Simplicial Complexes
	3.6.2 The Marching Algorithm
	3.6.3 Hypercube Classification
	3.6.4 Edge Interpolation
	3.6.5 Resolution
	3.6.6 Algorithms
	3.6.6.1 Tensor-Native Implementation
	3.6.6.1.1 2D: Using conv2d
	3.6.6.1.2 3D: Using conv3d

	3.7 Rescaling Transformations
	3.7.1 Function Classes
	3.7.2 Properties of Rescaling
	3.7.3 Rescaling for Ray Cast Stability

	4 XS: Nuclear Cross Section Service
	5 Rott: Row-Oriented Tensor Types
	5.1 Row-Oriented Tensor Type (ROTT)
	5.2 Operations on ROTTs
	5.2.1 Predicate Notation
	5.2.2 select
	5.2.3 mask_where
	5.2.4 slice
	5.2.5 reorder
	5.2.6 concat
	5.2.7 concat_bounded
	5.2.8 partition_uniform
	5.2.9 partition_by_labels

	5.3 The Rotts Struct
	5.3.1 map
	5.3.2 filter

	6 Roam: Discrete Stochastic Processes
	6.1 Stochastic Processes
	6.2 The Stepper Trait
	6.3 Trajectories
	6.4 Basic Markov Examples
	6.4.1 The Trivial Stepper
	6.4.2 A Counting Stepper
	6.4.3 Closure-Based Steppers
	6.4.4 Geometric Brownian Motion

	6.5 Basic Non-Markov Examples
	6.5.1 Pólya Urn Model

	6.6 Tensor States: The Ising Model
	6.6.1 Standard Ising Model (Markov)
	6.6.2 Magnetic Memory Ising (Non-Markov)

	6.7 Error-Based Termination

	7 Phlux Viewer
	7.1 Loading .phlux Files
	7.2 User Interface
	7.3 Filter Bifurcation

	8 Appendix
	8.1 Citation
	8.2 Contributing
	8.2.1 Quick Start
	8.2.2 Commit Message Format
	8.2.2.1 Examples

	8.2.3 Development Workflow
	8.2.4 Getting Help

