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1 Foreword

1.1 Workspace Breakdown

Crate Description

phlux Monte Carlo Particle Transport

crater Constructive Solid Geometry

xs Nuclear Cross Section Service

rott Row-Oriented Tensor Types

roam Discrete Stochastic Processes

1.2 Quick Links

1.2.1 Demos

[TBD - Coming soon]

1.2.2 Resources

• Repository

• Documentation

• Demo Site

• Issue Tracker

1.3 Notation

1.3.1 General Tensor Notation

This workspace employs tensor notation throughout. Almost every tensor encountered in this book is of rank ≤ 2. Colloquially, 

these are classic scalars, vectors and matrices.

• Objects with no indices are scalar-valued. (e.g. 𝜆, 𝑓 : ℝ𝑛 → ℝ)

• Objects with one or more indices are tensor-valued. (e.g. 𝑥𝑖, 𝑋𝑖𝑗, 𝐹 𝑖(𝑋𝑖𝑗) : ℝ𝑚×𝑛 → ℝ𝑚)

• Rank-1 tensors (vectors) are represented in lower-case, rank-𝑟 where 𝑟 > 1 tensors use upper-case. (e.g. 𝑥𝑗, 𝑋𝑖𝑗)

• Tensor operations use Einstein summation notation, eliding the summation symbol (e.g. 𝑥𝑗𝑥𝑗 = ∑𝑗 𝑥𝑗𝑥𝑗)

• Element-wise or broadcasted multiplication is indicated by juxtaposition (e.g. 𝑥𝑖𝑦𝑖). Shared indices indicate broadcasted 

multiplication (e.g. 𝑋𝑖𝑗𝑦𝑖 is the action of multiplying the 𝑖-th row of 𝑋𝑖𝑗 by the 𝑖-th element of 𝑦𝑖).

• When used, the spatial dimension is indexed by 𝑗, and the batch dimension is indexed by 𝑖. (e.g. 𝑥𝑗, 𝑋𝑖𝑗)
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2 Phlux: Transport Theory

Particle transport can be formulated as a discrete stochastic process, where the system state evolves through random 

interactions with geometry and materials. The phlux crate builds on the roam framework (see the Roam chapter for background 

on discrete stochastic processes) to implement Monte Carlo particle transport.

2.1 Transport as a Stochastic Process
Particle transport is a discrete Markov process. Over this chapter we will formulate N-particle transport using the abstractions 

provided by roam.rs (discrete stochastic processes) and rott.rs (row-oriented tensor types).

To begin, consider the history of a single particle. Below are a number of example histories, all beginning from a single source 

at depth 𝑑 = 0. For now, this initial particle is a neutron.

In these history diagrams, solid black lines indicate particles traveling through space-time. Each kink in the particle trajectory 

represents a concrete interaction between the particle and a nucleus, or some non-physical part of the system, such as a 

material boundary. These are called events, and they are colored by type (fission, scattering, etc.). Particle types (neutron, 

photon, etc.) are identified by the shape of the line, bearing resemblance to Feynmann diagrams.

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(a) Supercritical

⋮

(b) Reflective (c) Absorptive

⋮

(d) Transmissive

⋮ ⋮

(e) Diverse

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3

𝑑 = 4

𝑑 = 5

𝑑 = 6

Figure 1: Contrived particle histories over time as depth increases.

In example (a), our neutron collides with a fissile nucleus, generating 3 daughter progeny nucleus via fission. This chain 

reaction continues, and progeny neutrons induce subsequent fission events at 𝑑 = 2. This is a highly supercritical system; 

the neutron population increases exponentially with depth.

In (b), the neturon population is a constant; our source particle scatters elastically, inducing the creation of no additional 

progeny beyond itself. This history may represent a particle in a vaccuum encased by a perfectly reflective box.

Example (c) is trivial. The neutron is absorbed at its first collision.

Example (d) depicts a particle repeatedly transmitting between cells (uniform volumes of material) without interaction. This 

is non-physical; the particle experiences no change in state throughout the history.

Finally, in (e) we depict a more realistic particle history, containing a diverse set of events and particle types. Notably in 

depth 𝑑 = 3, the lone neutron undergoes inelastic scattering with a nucleus, spawning a progeny photon, depicted by the 

squiggly line. This photon is immediately absorbed at its next event. In a real simulation, the particle’s history is determined 

by the system geometry, and material cross sections (see xs.rs) from which event probabilites are computed.

It is crucial to reinforce that this is a Markov process; the event observed at 𝑑 = 𝐷 is completely determined by the parent 

event at 𝑑 = 𝐷 − 1, and no states prior (𝑑 < 𝐷 − 1). A fundamental assumption of phlux.rs is that particles do not interact, 

and thus all histories are independent from each other, as well.
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2.1.1 Particles and Events: Structures-of-Arrays

Because transport is a Markov process, and each particle is independent, this problem is embarassingly parallel. We can 

simulate the histories of batches of particles through the system concurrently, leveraging techniques and hardware designed 

to accelerate such calculations.

Particles are grouped into batches, and their data are organized in a Row-Oriented Tensor Type (Rott). This is a classic 

structure-of-arrays approach, which differs from the array-of-structures model, where one would expect to see Vec<Particle>, 

or similar.

pub struct ParticleBatch<B: Backend> {

    origins: Tensor<B, 2, Float>,         // [M, 3] - birth positions

    directions: Tensor<B, 2, Float>,      // [M, 3] - normalized vectors

    particle_types: Tensor<B, 1, Int>,    // [M] - Neutron(0) or Photon(1)

    energies: Tensor<B, 1, Float>,        // [M] - MeV

    particle_ids: Tensor<B, 1, Int>,      // [M] - unique IDs

    depths: Tensor<B, 1, Int>,            // [M] - generation level

    origin_event_ids: Tensor<B, 1, Int>,  // [M] - parent event ID

    start_times: Tensor<B, 1, Float>,     // [M] - creation time

}

The events induced by these particles follow a similar memory model (i.e., a Rott)

pub struct EventBatch<B: Backend> {

    origins: Tensor<B, 2, Float>,      // [M, 3] - spatial positions

    event_types: Tensor<B, 1, Int>,    // [M] - categorical type

    particle_ids: Tensor<B, 1, Int>,   // [M] - incident particle ID

    event_ids: Tensor<B, 1, Int>,      // [M] - unique event ID

    depths: Tensor<B, 1, Int>,         // [M] - generation level

    times: Tensor<B, 1, Float>,        // [M] - time of flight

}

These tensor-based structures are used during GPU-accelerated simulation. After each simulation step, data is extracted and 

stored in a backend for querying (see Section 2.3).

In mathematical notation, we typeset these types according to the rott.rs standard:

ℙ𝑖 (1)

and

𝔼𝑖 (2)

The internal state of our Markov process is therefore 𝔼𝑖(𝑑), representing collection of events across all histories in the batch 

at depth 𝑑.

2.2 The Transport Operator
The stochastic transport operator 𝕋𝑖 advances the simulation from depth 𝑑 to 𝑑 + 1:

𝔼𝑖(𝑑 + 1) = 𝕋𝑖(𝔼𝑗(𝑑)) (3)

This decomposes into two phases:

1. Progeny Sampling: From events 𝔼𝑗(𝑑) and incident particles ℙ𝑗(𝑑 − 1), sample progeny ℙ𝑖(𝑑) from nuclear cross section 

distributions.

2. Particle Casting: Simulate the flight of ℙ𝑖(𝑑) through the geometry, producing events 𝔼𝑖(𝑑 + 1).

Formally:

𝕋𝑖(𝔼𝑗(𝑑)) = ℝ𝑖(ℙ𝑖(𝔼𝑗(𝑑), ℙ𝑗(𝑑 − 1))) (4)

6



Phlux Book

The transport loop iterates until all particles are terminated (absorbed or escaped):

while active_particles > 0 {

    let progeny = sample_progeny(&events, &particles);

    let cast_result = geometry.particle_cast(&progeny, rng);

    storage.store(&cast_result);

    events = cast_result.events;

    particles = progeny;

}

2.2.1 Cell Identification

Before casting, each particle must be assigned to a geometry cell. Given particle positions 𝒓𝑖, we compute cell indices 𝑐𝑖 via 

point-location queries against the CSG regions:

𝑐𝑖 = argmax𝑐 𝜒𝑐(𝒓𝑖) (5)

where 𝜒𝑐 is the indicator function for cell 𝑐. The implementation sorts cells by volume (smallest first) and terminates early 

once all particles are assigned, avoiding redundant CSG evaluations.

2.2.2 Homogenization

A particle in cell 𝑐 is guaranteed to experience its next event within cell 𝑐. Note that a Transmission event at depth 𝑑 means 

the particle enters a new cell 𝑐′ in 𝑑 + 1.

This feature enables an important optimization: we can perform exactly one batched particle cast and resultant events are 

guaranteed to be within the cell.

Particles are homogenized, sorted by cell index so that particles in the same cell are contiguous:

ℙ𝑖 ⟶
𝜋

ℙ𝜋(𝑖) where 𝑐𝜋(𝑖) ≤ 𝑐𝜋(𝑖+1) (6)

𝑐1 𝑐2 𝑐3

geometry

homogenize

→

𝑐1 𝑐2 𝑐3

Figure 2: Homogenization: particles scattered across cells (left) are sorted into contiguous batches by cell (right).

// Homogenization: group particles by cell

let labeled = particles.map(|batch| {

    let labels = find_cell_indices(&cells, batch.origins());

    batch.partition_by_labels(labels)

});

let homogenized = labeled.concat_by_label(max_batch_size);

This is a spatial-based acceleration structure that eliminates unnecessary ray casts.

2.2.3 Batched Particle Casting

For each homogenized batch, ray casting determines where particles interact:

1. Sample free-flight distance: 𝑠 ∼ Exp(Σ𝑡) where Σ𝑡 is the total macroscopic cross section

2. Ray-trace to cell boundary: compute 𝑠𝑏, the distance to exit the current cell

3. Compare distances:

• If 𝑠 < 𝑠𝑏: nuclear event (collision) at distance 𝑠
• If 𝑠 ≥ 𝑠𝑏: transmission event at boundary
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𝑠

𝑠𝑏

𝒓

𝑠 < 𝑠𝑏: nuclear

𝑠𝑏
𝑠

𝒓

𝑠 ≥ 𝑠𝑏: transmission

Figure 3: Ray casting: sampled nuclear distance 𝑠 competes with boundary distance 𝑠𝑏. Here 𝑠 < 𝑠𝑏, so a nuclear event 
occurs.

// Ray casting through material

let boundary_distances = cell.region.ray_cast(&rays);

let nuclear_distances = sample_nuclear_distances(&batch, &xs, rng);

let is_nuclear = nuclear_distances.lower_than(boundary_distances);

let event_distances = nuclear_distances.mask_where(is_nuclear, boundary_distances);

let event_origins = batch.origins() + batch.directions() * event_distances;

For nuclear events, the reaction type is sampled from cross section ratios:

𝑃(absorption) = Σ𝑎
Σ𝑡

, 𝑃 (scattering) = Σ𝑠
Σ𝑡

, 𝑃 (fission) =
Σ𝑓

Σ𝑡
(7)

Invariant: Every particle produces exactly one event. This 1:1 alignment simplifies bookkeeping and enables efficient parallel 

processing.

2.2.4 Progeny Sampling

At each event, progeny particles are sampled based on event type:

Event Type Progeny Sampling

Source Sample random direction and energy from source distribution

Scattering Preserve energy; sample new isotropic direction

Fission Sample 𝜈 neutrons from 𝜈(𝐸); each gets random direction and fission spectrum energy

Transmission Push origin past boundary; preserve direction and energy

Absorption No progeny (particle terminates)

Scattering

1 progeny

⋮ ⋮ ⋮

Fission

𝜈 progeny

⋮

Transmission

1 progeny

Absorption

0 progeny

Figure 4: Progeny sampling by event type. Scattering and transmission produce one progeny each (with direction change or 
boundary crossing), fission produces 𝜈 progeny, and absorption terminates the particle.

Fission events require replication—a single event produces multiple progeny particles:

// Fission: replicate events for each progeny neutron

for (event_idx, nu) in nu_values.iter().enumerate() {

    for _ in 0..nu {

        replication_indices.push(event_idx);

    }
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}

let progeny_origins = events.origins().select(replication_indices);

2.3 The Storage Backend
During simulation, particle and event data flows from tensor objects back to the CPU and to a persistent storage backend.

2.3.1 Data Flow

// Simulation phase (tensors, on device)

ParticleBatch<B> / EventBatch<B>

        ↓ extract to CPU, async

// Storage phase (Polars DataFrames)

Backend {

    TableStorage  // events & particles DataFrames

    GraphStorage  // particle lineage graph

}

        ↓ query

// Query phase

TransportData → Observable::measure()

2.3.2 TableStorage

The TableStorage module stores events and particles in columnar tables (Polars DataFrames).

Events DataFrame schema:

Column Type Description

event_id u64 Unique identifier

transport_id String Simulation run ID

depth u64 Depth in the stochastic process, a.k.a generation

event_type String Source, Fission, Scattering, Transmission, Absorption

cell_id u64 Geometry cell

origin_x/y/z f32 Position (cm)

time f32 Timestamp (ns)

Particles DataFrame schema:

Column Type Description

particle_id u64 Unique identifier

particle_type String Neutron, Photon

origin_x/y/z f32 Birth position (cm)

direction_x/y/z f32 Unit direction vector

energy f32 Energy (MeV)

origin_event_id u64 Event that created this particle

caused_event_id u64 Event this particle caused

2.3.3 GraphStorage

The GraphStorage module maintains a directed graph of particle lineage using petgraph:

• Vertices: Events (indexed by EventId)

• Edges: Particles (connecting parent event → child event)

9
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This enables efficient genealogical queries (parent-child relationships, ancestry tracing, branching factors, etc.) that would 

be expensive on tabular data alone.

2.4 Observables
The transport simulation produces genealogies 𝔾𝑖(𝑑) = (𝔼𝑖(𝑑), ℙ𝑖(𝑑)) encoding the complete history of particle interactions. 

Extracting physical measurements from this data requires defining observables (also called tallies in Monte Carlo liter

ature).

2.4.1 The Observable Integral

An observable estimates an integral over phase space. The general form is:

𝑇 = ∫
𝒟︀

𝑅(𝒙)𝜓(𝒙)𝑑𝒙 (8)

where:

• 𝒙 = (𝒓, Ω̂, 𝐸, 𝑡) is the phase-space coordinate (position, direction, energy, time)

• 𝜓(𝒙) is the angular flux (particle density in phase space)

• 𝑅(𝒙) is the response function (what we measure at each point)

• 𝒟︀ is the integration domain (phase-space region of interest)

2.4.1.1 Tensor-Valued Response Functions

The response function 𝑅 can produce outputs of arbitrary tensor rank:

Rank Integral Example

0 (Scalar) 𝑇 = ∫
𝒟︀

𝑅𝜓𝑑𝒙 Total flux, multiplication factor 𝑘

1 (Vector) 𝑇 𝑖 = ∫
𝒟︀

𝑅𝑖𝜓𝑑𝒙 Cell flux: 𝑅𝑐 = 𝜒𝑐(𝒓) yields 𝑇 𝑐

2 (Matrix) 𝑇 𝑖𝑗 = ∫
𝒟︀

𝑅𝑖𝑗𝜓𝑑𝒙 Energy-cell: 𝑅𝑐𝑔 = 𝜒𝑐(𝒓)𝜒𝑔(𝐸)

3+ (Tensor) 𝑇 𝑖𝑗𝑘 = ∫
𝒟︀

𝑅𝑖𝑗𝑘𝜓𝑑𝒙 Spatial mesh: 𝑅𝑖𝑗𝑘 = 𝜒𝑖𝑗𝑘(𝒓)

The tensor rank of 𝑅 determines the shape of the measurement output.

2.4.2 The Observable Pipeline

In phlux, the observable integral decomposes into two components:

Tally Component phlux Concept Mathematical Role

𝒟︀ Filter Restricts the integration domain

𝑅𝑖1⋯𝑖𝑛(𝒙) Response<T> Response function with output shape T

An Observable composes these two components:

1. Filter: Selects which events/particles contribute (defines 𝒟︀)

2. Response: Maps filtered data to a measurement value (defines 𝑅 with its tensor rank)

The key insight is that the response function 𝑅𝑖1⋯𝑖𝑛 defines both what is measured and the structure of the data returned 

to the querier.

10
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EventFrame / ParticleFrame

Filter 𝒟︀

Response<T> 𝑅𝑖1⋯𝑖𝑛

Measurement<T>

Figure 5: The observable pipeline: data flows through Filter and Response stages to produce a measurement with uncertainty.

2.4.3 Measurements

A Measurement<T> is a physical quantity with statistical uncertainty derived from the number of counts included in the Filter:

𝑚 = (𝜇, 𝜎) (9)

where 𝜇 is the measured value and 𝜎 is the standard deviation.

Again, this concept extends to arbitrary tensors

𝑚𝑖𝑗𝑘 = (𝜇𝑖𝑗𝑘, 𝜎𝑖𝑗𝑘) (10)

In phlux, this is implemented as:

pub struct Measurement<T> {

    pub value: T,

    pub uncertainty: T,

}

pub type Scalar = Measurement<f64>;

pub type Vector = Measurement<Vec<f64>>;

Additional measurement types:

Type Description

Scalar Single value 𝑇  with uncertainty 𝜎
Vector Indexed values 𝑇 𝑖 with per-element uncertainty 𝜎𝑖

Histogram Binned values with bin edges and per-bin uncertainty

SpatialMesh 3D voxel grid 𝑇 𝑖𝑗𝑘 with per-voxel uncertainty

TimeSeries Time-indexed values 𝑇 (𝑡) with per-timestep uncertainty

Each measurement type carries uncertainty, enabling proper error propagation in downstream calculations.

2.4.4 Filters

A Filter selects which events or particles contribute to the measurement. Mathematically, a filter creates a boolean mask 

and applies masked selection:

𝑚𝑗 = [𝑃 𝑗(𝔼𝑗)] (boolean mask) (11)

𝔼𝑖 = 𝔼𝑗[𝑚𝑗] (12)

Note the different indices (𝑖 vs 𝑗) indicating that some counts may have been filtered out.

Filters implement the Filter trait:

11
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pub trait Filter: Send + Sync {

    fn apply_events(&self, frame: EventFrame) -> EventFrame {

        frame  // Default: no filtering

    }

    fn apply_particles(&self, frame: ParticleFrame) -> ParticleFrame {

        frame  // Default: no filtering

    }

}

Common filter implementations:

• EventTypeFilter — Filter events by type (Source, Scattering, Absorption, Fission, Transmission)

• ParticleTypeFilter — Filter particles by type (Neutron, Photon)

• DepthFilter — Filter events at specific collision depth

• CellFilter — Filter events in specific geometric cell

• EnergyFilter — Filter particles by energy range [min, max)

2.4.5 Response Functions

A Response maps filtered data to a measurement, encoding both the scoring logic and the output structure. The Response 

trait mirrors the Filter pattern:

pub trait Response: Send + Sync {

    type Output;

}

pub trait ResponseEvents: Response {

    fn respond(&self, frame: EventFrame) -> TransportResult<Self::Output>;

}

pub trait ResponseParticles: Response {

    fn respond(&self, frame: ParticleFrame) -> TransportResult<Self::Output>;

}

The response function 𝑅𝑖1⋯𝑖𝑛 determines both what each event contributes and the shape of the output. The tensor rank of 

𝑅 maps directly to Output:

Response Output Tensor Rank Description

Count Scalar 𝑅(𝒙) = 1 Count events with Poisson uncertainty

KEffective Scalar 𝑅 = 𝑁𝑑+1
𝑁𝑑

Multiplication factor (ratio)

CellFlux Vector 𝑅𝑐(𝒙) = 𝜒𝑐(𝒓) Per-cell event counts

EnergySpectrum Histogram 𝑅𝑔(𝒙) = 𝜒𝑔(𝐸) Binned energy distribution

SpatialFlux SpatialMesh 𝑅𝑖𝑗𝑘(𝒙) = 𝜒𝑖𝑗𝑘(𝒓) 3D voxel flux

Uncertainty is Poisson-derived for all counting responses (𝜎 =
√

𝑁). For ratio responses like 𝑘-effective:

𝜎𝑘 = 𝑘√ 1
𝑁0

+ 1
𝑁1

(13)

2.4.6 The Frame API

Observables query data through frames, lazy wrappers around the TableStorage backend that provide a fluent filtering API.

12
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DataFrames

Both ParticleFrame and EventFrame operate over LazyFrames. This allows Polars to J-I-T optimize the query operations 

for us.

2.4.6.1 EventFrame

EventFrame provides methods for filtering and querying events:

let frame = data.events()

    .with_type(EventType::Fission)    // Filter by event type

    .at_depth(5)                       // Filter by depth

    .in_cell(cell_id)                  // Filter by geometry cell

    .in_time_range(0.0, 100.0);        // Filter by time window

let count = frame.count();             // Terminal: count events

let events = frame.collect();          // Terminal: collect Vec<Event>

let df = frame.dataframe();            // Terminal: get Polars DataFrame

Filter methods:

• .with_type(EventType) / .exclude_type(EventType) — filter by event type

• .at_depth(u64) — filter by generation depth

• .in_cell(CellId) — filter by geometry cell

• .in_bbox(BoundingBox) — filter by spatial bounds

• .in_time_range(f32, f32) — filter by time window

2.4.6.2 ParticleFrame

ParticleFrame provides similar methods for particles:

let frame = data.particles()

    .with_type(ParticleType::Neutron)  // Filter by particle type

    .energy_between(0.1, 10.0);        // Filter by energy range (MeV)

let count = frame.count();

let particles = frame.collect();

Filter methods:

• .with_type(ParticleType) — filter by particle type (Neutron, Photon)

• .energy_between(f32, f32) — filter by energy range

• .from_event(EventId) — particles originating from specific event

2.4.7 Canonical Observables

This section illustrates canonical Observable implementers in phlux.rs.

2.4.7.1 Count (Scalar)

The simplest observable counts events within a domain 𝒟︀:

𝑇 = ∫
𝒟︀

𝑅(𝒙)𝜓(𝒙)𝑑𝒙 where 𝑅(𝒙) = 1 (14)

With Poisson uncertainty 𝜎 =
√

𝑁 .

13
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𝒟︀

𝑅 = 1
𝑁

±
√

𝑁

Figure 6: Count response: events within domain 𝒟︀ produce a scalar 𝑁 ±
√

𝑁 .

// Count via Frame API

let n = data.events()

    .with_type(EventType::Fission)

    .at_depth(5)

    .count();

let uncertainty = (n as f64).sqrt();

println!("N = {} ± {:.2}", n, uncertainty);

2.4.7.2 K-Effective (Scalar Ratio)

The multiplication factor 𝑘(𝑑) measures the branching ratio between consecutive depths:

𝑘(𝑑) = 𝑁(𝑑 + 1)
𝑁(𝑑)

= |𝔼𝑖(𝑑 + 1)|
|𝔼𝑗(𝑑)|

(15)

With ratio error propagation:

𝜎𝑘 = 𝑘√ 1
𝑁0

+ 1
𝑁1

(16)

𝑑 𝑁𝑑 = 4

𝑑 + 1 𝑁𝑑+1 = 6

𝑘 = 1.5
±0.97

Figure 7: K-effective response: ratio of event counts at consecutive depths 𝑑 and 𝑑 + 1.

Interpretation:

• 𝑘(𝑑) < 1: Subcritical — population decreases with depth

• 𝑘(𝑑) = 1: Critical — population remains constant

• 𝑘(𝑑) > 1: Supercritical — population grows with depth

let keff = KEffective::at_depth(5);

let result: Scalar = data.measure(&keff)?;

println!("k = {} ± {}", result.value, result.uncertainty);

2.4.7.3 Cell Flux (Vector)

Cell flux counts events per geometric cell, producing a vector output:

𝑇 𝑐 = ∫
𝒟︀

𝑅𝑐(𝒙)𝜓(𝒙)𝑑𝒙 where 𝑅𝑐(𝒙) = 𝜒𝑐(𝒓) (17)
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The indicator function 𝜒𝑐(𝒓) = 1 if 𝒓 ∈ cell𝑐, else 0. Per-cell Poisson uncertainty:

𝜎𝑐 =
√

𝑇 𝑐 (18)

𝑐1 𝑐2 𝑐3

𝑅𝑐 = 𝜒𝑐

3

7

2

𝑇 𝑐

Figure 8: Cell flux response: events are binned by geometric cell, producing per-cell counts 𝑇 𝑐.

let flux = CellFlux::from_cells(&geometry.cells());

let result: Vector = data.measure(&flux)?;

for (cell_id, (value, uncertainty)) in result.iter().enumerate() {

    println!("Cell {}: {} ± {}", cell_id, value, uncertainty);

}

2.4.7.4 Energy Spectrum (Histogram)

Energy spectrum bins particles by energy, producing a histogram:

𝑇 𝑔 = ∫
𝒟︀

𝑅𝑔(𝒙)𝜓(𝒙)𝑑𝒙 where 𝑅𝑔(𝒙) = 𝜒𝑔(𝐸) (19)

The indicator function 𝜒𝑔(𝐸) = 1 if 𝐸 ∈ [𝐸𝑔, 𝐸𝑔+1), else 0. Per-bin Poisson uncertainty.

𝐸
0 0.1 1 10 20

𝑅𝑔 = 𝜒𝑔(𝐸)

𝑇 𝑔

Figure 9: Energy spectrum response: particles are binned by energy, producing histogram counts 𝑇 𝑔.

let spectrum = EnergySpectrum::with_bins(vec![0.0, 0.1, 1.0, 10.0, 20.0]);

let result: Histogram = data.measure(&spectrum)?;

for (bin, (value, uncertainty)) in result.iter().enumerate() {

    println!("Bin {}: {} ± {}", bin, value, uncertainty);

}

2.4.7.5 Spatial Flux (SpatialMesh)

Spatial flux bins events into a 3D voxel grid:

𝑇 𝑖𝑗𝑘 = ∫
𝒟︀

𝑅𝑖𝑗𝑘(𝒙)𝜓(𝒙)𝑑𝒙 where 𝑅𝑖𝑗𝑘(𝒙) = 𝜒𝑖𝑗𝑘(𝒓) (20)

The indicator function 𝜒𝑖𝑗𝑘(𝒓) = 1 if 𝒓 is in voxel (𝑖, 𝑗, 𝑘), else 0. Per-voxel Poisson uncertainty.
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(𝑖, 𝑗, 𝑘) voxels

𝑅𝑖𝑗𝑘
𝑇 𝑖𝑗𝑘

3D mesh

Figure 10: Spatial flux response: events are binned into 3D voxels, producing a mesh 𝑇 𝑖𝑗𝑘.

let mesh = SpatialFlux::new(bounds, [10, 10, 10]);

let result: SpatialMesh = data.measure(&mesh)?;

for ((i, j, k), (value, uncertainty)) in result.iter() {

    println!("Voxel ({},{},{}): {} ± {}", i, j, k, value, uncertainty);

}

2.5 Transport as a Genealogy
The genealogy 𝔾𝑖(𝑑) = (𝔼𝑖(𝑑), ℙ𝑖(𝑑)) can be represented as a directed graph 𝐺(𝐸, 𝑃), where:

• Vertices correspond to events (rows in 𝔼𝑖(𝑑))
• Edges correspond to particles (rows in ℙ𝑖(𝑑))

This forms a forest of trees, each rooted at a source event and extending until all progeny are terminated. The depth 𝑑 of 

an event is the number of edges traversed from the root.

This graph representation enables:

1. Genealogical queries (parent-child relationships)

2. Criticality analysis (branching factors)

3. Path-based tallies (event sequences)

4. Lineage tracking (contribution from specific sources)

2.5.1 A Genealogical View on Criticality

The multiplication factor 𝑘(𝑑) is the average branching factor of the forest at depth 𝑑:

𝑘(𝑑) = 𝔼𝑒∈𝐸(𝑑)[𝑏(𝑒)]

=
∑𝑒∈𝐸(𝑑) 𝑏(𝑒)

|𝐸(𝑑)|
(21)

where 𝑏(𝑒) is the outgoing degree of vertex 𝑒 (number of progeny particles produced by the event).

The uncertainty in 𝑘(𝑑) follows the observable contract:

Δ𝑘(𝑑)2 =
∑𝑒∈𝐸(𝑑) (𝑏(𝑒) − 𝑘(𝑑))2

|𝐸(𝑑)|
(22)
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3 Crater: Constructive Solid Geometry

crater.rs is a library for constructing and analyzing N-dimensional fields.

3.1 Scalar Fields
A scalar field is a function that assigns a number to each point in space:

𝑓 : ℝ𝑛 → ℝ (23)

In crater.rs, types that implement ScalarField<N> behave like the class of functions above.

In one dimension, a scalar field is simply a function 𝑓 : ℝ → ℝ. Consider a simple quadratic:

𝑓(𝑥) = 𝑥2 − 𝑟2 (24)

The parameter 𝑟 defines a family of fields.

Figure 11: 1D scalar field 𝑓(𝑥) = 𝑥2 − 𝑟2 for different values of 𝑟. Blue shading indicates 𝑓 < 0 (inside), orange indicates 𝑓 >
0 (outside).

In two dimensions, scalar fields become 𝑓 : ℝ2 → ℝ. We can extend our earlier example naturally:

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑟2 (25)
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Figure 12: 2D scalar field 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑟2 for different values of 𝑟. Isosurfaces are presented as dashed contours.

Isosurfaces

An isosurface is a locus of points where the scalar field is constant:

𝜕𝑓 = {𝑥𝑗 ∈ ℝ𝑛 | 𝑓(𝑥𝑗) = 𝑐} (26)

crater.rs’s IsoSurface type represents a pairing of a function 𝑓 : ℝ𝑛 → ℝ with a constant 𝑐.

Of course we are not restricted to just circular fields. Fields can be defined by any function 𝑓 : ℝ𝑛 → ℝ.
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/// f(x, y) = sin²(x) + cos²(y)

fn eval_trig(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {

    let n = pts.dims()[0];

    let x = pts.clone().slice([0..n, 0..1]).squeeze::<1>();

    let y = pts.slice([0..n, 1..2]).squeeze::<1>();

    x.sin().powf_scalar(2.0) + y.cos().powf_scalar(2.0)

}

/// f(x, y) = x · y

fn eval_xy(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {

    let n = pts.dims()[0];

    let x = pts.clone().slice([0..n, 0..1]).squeeze::<1>();

    let y = pts.slice([0..n, 1..2]).squeeze::<1>();

    x * y

}

/// f(x, y) = exp(-(x² + y²) / 10)

fn eval_gaussian(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {

    let n = pts.dims()[0];

    let x = pts.clone().slice([0..n, 0..1]).squeeze::<1>();

    let y = pts.slice([0..n, 1..2]).squeeze::<1>();

    (x.clone() * x + y.clone() * y).div_scalar(2.0).neg().exp()

}

/// f(x, y) = sin(x * 4)

fn eval_sin_x(pts: Tensor<Backend, 2>) -> Tensor<Backend, 1> {

    let n = pts.dims()[0];

    let x = pts.slice([0..n, 0..1]).squeeze::<1>();

    x.mul_scalar(4).sin()

}
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Figure 13: Exotic 2D scalar fields.

This abstraction is not limited to closed-form functions. Any programmable function can be used to define a field by 

implementing the ScalarField trait.

/// A Mandelbrot escape-time field.

///

/// For each point c = (x, y) in the complex plane, iterates

/// z_{n+1} = z_n² + c starting from z_0 = 0. Returns a normalized

/// escape time in [-1, 1], where -1 indicates points that never

/// escape (inside the set) and positive values indicate how

/// quickly the point escaped.
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#[derive(Clone)]

struct MandelbrotField {

    max_iter: usize,

}

impl ScalarField<2, Backend> for MandelbrotField {

    fn evaluate(&self, origins: Tensor<Backend, 2>) -> Tensor<Backend, 1> {

        let n = origins.dims()[0];

        let device = origins.device();

        let cx = origins.clone().slice([0..n, 0..1]).squeeze::<1>();

        let cy = origins.slice([0..n, 1..2]).squeeze::<1>();

        let mut zx = Tensor::<Backend, 1>::zeros([n], &device);

        let mut zy = Tensor::<Backend, 1>::zeros([n], &device);

        let mut result = Tensor::<Backend, 1>::full([n], -1.0, &device);

        let mut escaped = Tensor::<Backend, 1>::zeros([n], &device);

        for iter in 0..self.max_iter {

            // z² = (zx + i·zy)² = (zx² - zy²) + i·(2·zx·zy)

            let zx2 = zx.clone() * zx.clone();

            let zy2 = zy.clone() * zy.clone();

            let new_zx = zx2.clone() - zy2.clone() + cx.clone();

            let new_zy = zx.clone() * zy * 2.0 + cy.clone();

            // Escape criterion: |z|² > 4

            let mag2 = zx2 + zy2;

            let just_escaped =

                mag2.greater_elem(4.0).float() * (escaped.clone().neg() + 1.0);

            // Record normalized iteration count for escaped points

            let iter_value = (iter as f32 / self.max_iter as f32) * 2.0 - 1.0;

            result = result.clone() * (just_escaped.clone().neg() + 1.0)

                + just_escaped.clone() * iter_value;

            escaped = escaped + just_escaped;

            zx = new_zx;

            zy = new_zy;

        }

        result

    }

}
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Figure 14: A field with no closed-form expression. This Mandelbrot field computes an iterative escape time at each point, 
generating a fractal pattern.

3.1.1 Batch Evaluation

Evaluation of scalar fields at points in ℝ𝑛 is an embarassingly parallel operation. Thus, we enable efficient batch evaluation 

by defining a tensor-valued function 𝐹 𝑖 : ℝ𝑚×𝑛 → ℝ𝑚:

𝐹 𝑖(𝑋𝑖𝑗) = 𝑣𝑖 (27)

where 𝑣𝑖 is a rank-1 tensor with length 𝑚.

𝐹 𝑖 satisfies the following two properties:

𝐹 𝑘(𝑋𝑘𝑗) = 𝑓(𝑥𝑗) ∀𝑘 ∈ [1, 𝑚] with 𝑥𝑗 = 𝑋𝑘𝑗 (28)

and

𝜕𝐹 𝑖

𝜕𝑋𝑘𝑗 = 𝛿𝑖𝑘 𝜕𝐹 𝑖

𝜕𝑋𝑖𝑗 (29)

The first property states that 𝐹 𝑖 is equivalent to evaluating 𝑓 over each row of 𝑋𝑖𝑗 independently. The second property 

states the Jacobian is block diagonal—each output row is a function of only its corresponding input row. Colloquially, this 

means that all rows are evaluated independently.

For the remainder of this chapter, we will refer to scalar fields using the 𝐹 𝑖 notation to reinformce that our algorithms are 

operating on batches of input points.

3.2 Regions
A Region is the volume enclosed by an isosurface:

22



Phlux Book

𝑅𝐹 = {𝑥𝑗 | 𝐹 𝑖(𝑥𝑗) ≤ 0} (30)

The simplest Region is a halfspace, which divides 𝑅𝑛 into two sets: those point within the Region and those without it.

Figure 15: A circular Region. Hatching indicates the interior.

Contiguity

Depending on the behavior of 𝐹 𝑖 or isosurface value, a Region may not be contiguous:

// A field that produces non-contiguous regions: sin(πx) * sin(πy)

// This creates a checkerboard pattern where each cell is a separate region

let field = FnField::new(|pts: Tensor<Backend, 2>| {

    let n = pts.dims()[0];

    let x = pts.clone().slice([0..n, 0..1]).squeeze::<1>();

    let y = pts.slice([0..n, 1..2]).squeeze::<1>();

    (x * PI).sin() * (y * PI).sin()

});
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Figure 16: A non-contiguous Region from 𝑓(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). Every blue cell in the checkerboard pattern is a 
member of the same halfspace Region.

3.2.1 Constructive Solid Geometry

Constructive Solid Geometry (CSG) enables the creation of arbitrarily complex shapes through the algebraic combination 

of primitive Regions. A number of common primitives are implemented via the FieldND<const N: usize> enum. However, 

CSG can incorporate any Region, not just those made from our primitives.

CSG is defined by a collection of binary and unary algebraic operations. These operations bear resemblance to set-theoretic 

operations:

1. Union: 𝐹 𝑖 ∪ 𝐺𝑖 = min(𝐹 𝑖, 𝐺𝑖)
2. Intersection: 𝐹 𝑖 ∩ 𝐺𝑖 = max(𝐹 𝑖, 𝐺𝑖)
3. Complement: 𝐹 𝑖 = −𝐹 𝑖

From this we derive the difference operation 𝐹 𝑖 ∖ 𝐺𝑖 = 𝐹 𝑖 ∩ 𝐺𝑖

In direct set notation:

𝑅𝐹 ∪ 𝑅𝐺 = {𝑥𝑗 | 𝐹 𝑖(𝑥𝑗) ≤ 0 or 𝐺𝑖(𝑥𝑗) ≤ 0}

𝑅𝐹 ∩ 𝑅𝐺 = {𝑥𝑗 | 𝐹 𝑖(𝑥𝑗) ≤ 0 and 𝐺𝑖(𝑥𝑗) ≤ 0}

𝑅𝐹 ∖ 𝑅𝐺 = {𝑥𝑗 | 𝐹 𝑖(𝑥𝑗) ≤ 0 and 𝐺𝑖(𝑥𝑗) > 0}
(31)

Isosurface thickness

In practice, testing 𝐹 𝑖(𝑥𝑗) = 0𝑖 exactly is numerically fragile. Numerical methods are sensitive to the finite precision of 

the floating-point representation of the real numbers.
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Consider a 1D field 𝑓(𝑥) where 𝑓(𝑥1) < 0, 𝑓(𝑥2) > 0 and 𝑥1 and 𝑥2 are adjacent representable floating point numbers 

(i.e., they differ by their least significant bit, only). In this case, there exists no 𝑥∗ such that 𝑓(𝑥∗) = 0 exactly and 𝑥1 <
𝑥∗ < 𝑥2, without increasing our floating point precision.

To combat this, we use an epsilon tolerance 𝜀 to classify points into three categories:

• Inside: 𝑓(𝑥) < −𝜀
• On: |𝑓(𝑥)| ≤ 𝜀
• Outside: 𝑓(𝑥) > 𝜀

Figure 17: Classification bands around the zero isosurface of a circular field in 2D. The dashed contours show 𝑓 = −𝜀 
and 𝑓 = +𝜀. Points between them are classified as “on” the surface.
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Figure 18: CSG operations: union (top-left), intersection (top-right), complement (bottom-left), difference (bottom-right).

These operations can be composed to create increasingly complex Regions. Region itself is an enum that behaves like a 

tree node:

// pub enum Region<const N: usize, B: Backend> {

//     HalfSpace(Isosurface<N, B>, Side),

//     Union(Box<Region<N, B>>, Box<Region<N, B>>),

//     Intersection(Box<Region<N, B>>, Box<Region<N, B>>),

// }

By composing these operations, we create a tree of operations that concretely define the composite Region:
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(𝐴𝑖 ∪ 𝐵𝑖) ∖ 𝐶𝑖

∖

∪ 𝐶𝑖

𝐴𝑖 𝐵𝑖

Figure 19: A CSG tree representing the functional composition (𝐴𝑖 ∪ 𝐵𝑖) ∖ 𝐶𝑖. Leaf nodes are primitive Regions; internal 
nodes represent intermediate Regions.

These trees are unbounded in depth, enabling the procedural creation of complex Regions:

/// Constructs a 2D gear region with the specified number of teeth.

///

/// The gear is built from CSG primitives:

/// - A circular body (outer radius)

/// - A circular hole (inner radius)

/// - Teeth formed by intersecting pairs of halfspaces (lines)

///

/// Each tooth is a wedge created by intersecting two halfspaces

/// whose normals point inward, rotated around the gear center.

pub fn gear_2d<B: burn::tensor::backend::Backend>(

    outer_radius: f32,

    inner_radius: f32,

    num_teeth: usize,

    tooth_height: f32,

    tooth_width_fraction: f32, // fraction of tooth spacing (0..1)

) -> Region<2, B> {

    use std::f32::consts::PI;

    // Base body: outer circle minus inner hole

    let body: Region<2, B> = FieldND::circle(outer_radius).into_isosurface(0.0).region();

    let hole: Region<2, B> = FieldND::circle(inner_radius).into_isosurface(0.0).region();

    let mut gear = body.clone() & -hole;

    // Add teeth around the circumference

    let tooth_radius = outer_radius + tooth_height;

    let angle_per_tooth = 2.0 * PI / num_teeth as f32;

    let half_tooth_angle = angle_per_tooth * tooth_width_fraction * 0.5;

    for i in 0..num_teeth {

        let center_angle = i as f32 * angle_per_tooth;

        // Create a tooth as a wedge: intersection of two halfspaces

        // Left edge of tooth

        let left_angle = center_angle - half_tooth_angle;

        let left_normal = [left_angle.sin(), -left_angle.cos()];

        let left_plane: Region<2, B> =

            FieldND::line(left_normal).into_isosurface(0.0).region();
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        // Right edge of tooth

        let right_angle = center_angle + half_tooth_angle;

        let right_normal = [-right_angle.sin(), right_angle.cos()];

        let right_plane: Region<2, B> =

            FieldND::line(right_normal).into_isosurface(0.0).region();

        // Tooth is the wedge between planes, bounded by outer and inner radii

        // The tooth only extends outward from the body (between outer_radius and tooth_radius)

        let outer_bound: Region<2, B> =

            FieldND::circle(tooth_radius).into_isosurface(0.0).region();

        let inner_bound: Region<2, B> = body.clone();

        let tooth = left_plane & right_plane & outer_bound & -inner_bound;

        gear = gear | tooth;

    }

    gear

}

Figure 20: Procedurally generated gears with 6 and 12 teeth, built from circles and halfspaces.

3.2.1.1 Algebras

A CSGAlgebra is a concrete implementation of the CSG operations. In the mathematical sense:

𝑨 = (𝑃(𝐷), ∪, ∩) (32)

where 𝑃(𝐷) is the power set of domain 𝐷.

3.2.1.1.0.1 Differentiable Algebras

Differentiable approximations of CSG operations can be constructed:

𝐹 𝑖 ∪ 𝐺𝑖 = 𝐹 𝑖 + 𝐺𝑖 +
√

𝐹 𝑖𝐹 𝑖 + 𝐺𝑖𝐺𝑖 − 2𝛼𝑖𝐹 𝑖𝐺𝑖

1 + 𝛼𝑖

𝐹 𝑖 ∩ 𝐺𝑖 = 𝐹 𝑖 + 𝐺𝑖 −
√

𝐹 𝑖𝐹 𝑖 + 𝐺𝑖𝐺𝑖 − 2𝛼𝑖𝐹 𝑖𝐺𝑖

1 + 𝛼𝑖

(33)
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where 𝛼𝑖 controls smoothness. 𝛼𝑖 = 1 reduces to the original min-max operations.

3.2.1.1.0.2 Blending

A custom blending function can be added to both ∪ and ∩ operators:

𝜑(𝐹 𝑖, 𝐺𝑖) = 𝑎0

1 + (𝐹 𝑖

𝑎1
)

2
+ (𝐺𝑖

𝑎2
)

2 (34)

where 𝑎0, 𝑎1, 𝑎2 are positive constants that control the shape of the blending function.

3.2.2 Primitives

crater.rs provides a number of dimension-generic primitive Regions via the FieldND interface.

Figure 21: 2D primitives: line (halfspace), circle, ellipse, and bounding box.
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3.3 Transformations
Until now, all fields we have discussed have been centered at the origin. We extend our framework to include arbitary 

transformations on our fields.

Any function 𝑇 𝑖 : ℝ𝑚×𝑛 → ℝ𝑚×𝑛 can perform covariant transformations on our fields without changing our definition of 𝐹 𝑖:

𝐹 𝑖(𝑋𝑖𝑗) ↦ 𝐹 𝑖(𝑇 𝑖(𝑋𝑖𝑗)) (35)

In plain language, the transformation is on the domain of 𝐹 𝑖, not its image.

crater.rs provides a number of transformations to use off-the-shelf via the Transformation enum.

3.3.1 Translation

Transformation::Translate implements a tensor-valued function 𝑇 𝑖 : ℝ𝑚×𝑛 → ℝ𝑚×𝑛:

𝑇 𝑖(𝑋𝑖𝑗) = 𝑋𝑖𝑗 − 𝑡𝑗 (36)

where 𝑡𝑗 ∈ ℝ𝑛 is the translation vector.

fn translate_before<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    FieldND::circle(0.8).into_isosurface(0.0).region()

}

fn translate_after<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    translate_before().transform(Transform::translate([1.0, 0.5]))

}

Figure 22: Left: original circle. Right: circle translated by (1, 0.5).

3.3.2 Scaling

Transformation::ScaleDim implements a tensor-valued function 𝑆𝑖 : ℝ𝑚×𝑛 → ℝ𝑚×𝑛:

𝑆𝑖(𝑋𝑖𝑗) = 𝑋𝑖𝑗𝑠𝑖 (37)

where 𝑠𝑖 ∈ ℝ is the scale factor for the 𝑖th dimesion, only.
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fn scale_before<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    FieldND::circle(1.0).into_isosurface(0.0).region()

}

fn scale_after<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    scale_before()

        .transform(Transform::scale_dim(0, 1.5))

        .transform(Transform::scale_dim(1, 1.5))

}

Figure 23: Left: unit circle. Right: scaled uniformly by factor 1.5, resulting in radius 1.5.

non-unitarity of scaling

The scaling transformations are not unitary operations. A circle of radius 1 scaled by factor 2 produces a different field 

than a circle constructed with radius 2, even though their boundaries coincide:

// Demonstrates that scaling is NOT a unitary operation on scalar fields.

// A circle(1) scaled by 2 produces a DIFFERENT field than circle(2).

// The boundary (isosurface at 0) is the same, but field values differ.

/// Circle of radius 1, scaled by factor 2 in both dimensions

fn scaled_circle<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    FieldND::circle(1.0)

        .into_isosurface(0.0)

        .region()

        .transform(Transform::scale_dim(0, 2.0))

        .transform(Transform::scale_dim(1, 2.0))

}

/// Circle of radius 2 (constructed directly)

fn direct_circle<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    FieldND::circle(2.0).into_isosurface(0.0).region()

}
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Figure 24: Left: circle(1) scaled by 2. Right: circle(2). The boundaries match, but the field gradients differ.

3.3.3 Rotation

Transformation::Rotate N-dimensional rotation 𝑅𝑖 : ℝ𝑚×𝑛 → ℝ𝑚×𝑛 with 𝑅𝑖 ∈ SO(𝑛) can be represented as a sequence of 

plane rotations.

A plane rotation is a rotation in a 2D plane spanned by coordinate axes 𝑎 and 𝑏, parameterized by angle 𝜃𝑎𝑏. Call this 

𝐺(𝑎, 𝑏, 𝜃𝑎𝑏).

The general N-dimensional rotation is a product of 𝑛(𝑛−1)
2  plane rotations:

𝑅𝑖 = ∏
𝑛

𝑎=2
∏
𝑎−1

𝑏=1
𝐺(𝑎, 𝑏, 𝜃𝑎𝑏) (38)

Intuitively, 𝐺(𝑎, 𝑏, 0) is the identity tensor.

fn rotate_before<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    FieldND::ellipse(1.2, 0.6).into_isosurface(0.0).region()

}

fn rotate_after<B: burn::tensor::backend::Backend>() -> Region<2, B> {

    rotate_before().transform(Transform::rotate(0, 1, std::f32::consts::FRAC_PI_4))

}
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Figure 25: Left: original ellipse. Right: rotated by 45 deg in the xy-plane.

3.3.4 Non-standard Transformations

Transformations are not limited to those which are exposed by the Transformation enum. Any implementer of the 

ApplyTransformation trait can be used to covariantly tranform a field.

For example, the Poincaré disk model maps the hyperbolic plane ℍ2 to the open disk 𝔻2 = {𝑧 ∈ ℂ : |𝑧| < 1
𝜂}, compressing 

points far from the origin toward the boundary.

For a tensor of points 𝑋𝑖𝑗 ∈ ℝ𝑚×𝑛 with radial distance 𝑟𝑖 = √𝑋𝑖𝑗𝑋𝑖
𝑗, the transformation 𝑃 𝑖 : ℝ𝑚×𝑛 → 𝔻𝑚×𝑛 is:

𝑃 𝑖(𝑋𝑖𝑗) = 𝑋𝑖𝑗 tanh(𝜂𝑟)
𝜂𝑟

(39)

where 𝜂 ∈ ℝ+ is the scale parameter controlling the disk radius 1
𝜂 .

The inverse transformation 𝑃−1 : 𝔻𝑚×𝑛 → ℝ𝑚×𝑛 used for covariant field evaluation is:

𝑃−1(𝑋𝑖𝑗) = 𝑋𝑖𝑗 arctanh(𝜂𝑟)
𝜂𝑟

(40)

Points at 𝑟𝑖 → ∞ in hyperbolic space map to the disk boundary 𝑟′𝑖 → 1
𝜂 .

use crater::analysis::prelude::RayField;

use crater::csg::prelude::ApplyTransformation;

use crater::csg::transformations::Covariant;

/// A Poincaré disk transformation that maps the infinite plane

/// into a bounded disk. Points far from the origin are compressed

/// toward the boundary.

///

/// Uses the formula: r' = tanh(r * scale) / scale

/// where r is the distance from the origin.

#[derive(Clone)]

pub struct PoincareDisk {

    pub scale: f32,

}
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impl<B: burn::tensor::backend::Backend> ApplyTransformation<2, B> for PoincareDisk {

    fn apply_scalar_field(

        self,

        original: Box<dyn ScalarField<2, B>>,

    ) -> Box<dyn ScalarField<2, B>> {

        let scale = self.scale;

        Box::new(Covariant::ScalarField {

            field: original,

            // Forward: disk coords → hyperbolic coords (inverse of projection)

            transform: Box::new(move |points: Tensor<B, 2>| {

                let n = points.dims()[0];

                let x = points.clone().slice([0..n, 0..1]);

                let y = points.clone().slice([0..n, 1..2]);

                // r = sqrt(x² + y²)

                let r = (x.clone() * x.clone() + y.clone() * y.clone()).sqrt();

                let r_safe = r.clone().clamp_min(1e-8);

                // Inverse of tanh: arctanh(r * scale) / scale

                // arctanh(x) = 0.5 * ln((1+x)/(1-x))

                let rs = (r_safe.clone() * scale).clamp(-0.999, 0.999);

                let r_hyp =

                    ((rs.clone() + 1.0).log() - (-rs + 1.0).log()).mul_scalar(0.5 / scale);

                // Scale factor: r_hyp / r

                let factor = r_hyp / r_safe;

                let new_x = x * factor.clone();

                let new_y = y * factor;

                Tensor::cat(vec![new_x, new_y], 1)

            }),

            // Inverse: hyperbolic coords → disk coords

            inverse_transform: Box::new(move |points: Tensor<B, 2>| {

                let n = points.dims()[0];

                let x = points.clone().slice([0..n, 0..1]);

                let y = points.clone().slice([0..n, 1..2]);

                let r = (x.clone() * x.clone() + y.clone() * y.clone()).sqrt();

                let r_safe = r.clone().clamp_min(1e-8);

                // r' = tanh(r * scale) / scale

                let r_disk = (r_safe.clone() * scale).tanh() / scale;

                let factor = r_disk / r_safe;

                let new_x = x * factor.clone();

                let new_y = y * factor;

                Tensor::cat(vec![new_x, new_y], 1)

            }),

        })

    }

    fn apply_ray_field(self, original: Box<dyn RayField<2, B>>) -> Box<dyn RayField<2, B>> {

        // Poincaré disk ray field transformation not implemented

        original

    }

}
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Figure 26: A grid of circles before (left) and after (right) Poincaré disk projection. Circles far from the origin appear smaller 
and compressed toward the disk boundary. Notice that the original bounds are [−4, 4] × [−4, 4], but in the transformed space, 
all points map to the disk of radius 1

𝜂  where 𝜂 is the Poincaré disk scale. Field values outside of the disk are an artifact of 

our use of clamp.

3.4 Ray Casting
A batch of rays is defined by:

• Origins 𝑋𝑖𝑗 ∈ ℝ𝑚×𝑛

• Directions 𝑈 𝑖𝑗 ∈ ℝ𝑚×𝑛 (unit vectors)

Ray casting is the computational problem of finding a tensor Λ𝑖 such that 𝐹 𝑖(𝑆𝑖𝑗(Λ𝑖)) = 0𝑖, where 𝑆𝑖𝑗 is the function 

representing ray extensions:

𝑆𝑖𝑗(Λ𝑖) = 𝑋𝑖𝑗 + Λ𝑖𝑈 𝑖𝑗 (41)

There are a number of methods for computing Λ𝑖, either via analytical computation, or numerical iteration. The class of 𝐹 𝑖 

determines which methods are available for use, and which are performant.

Row-Oriented Tensor Types

crater.rs’s API for ray casting is mediated by the Rays and RayCastResult types. These types are aliases for Rotts<B, 

RayBatch<B, N>> and Rotts<B, RayBatchCastResult<B, N>>, respectively (see Section 5).

3.4.1 Analytical Method

The analytical method computes intersection points directly by making the implicit function explicit:

𝐹 𝑖(𝑆𝑖𝑗(Λ𝑖)) = 0𝑖 (42)

is inverted to solve for Λ𝑖:

Λ𝑖 = 𝑅𝑖(𝑋𝑖𝑗, 𝑈 𝑖𝑗) (43)

Where 𝑅𝑖 is a RayField. RayFields are similar to ScalarFields, but take an extra input parameter: a tensor of unit directions 

𝑈 𝑖𝑗. The field returns the rank-1 tensor of distances from 𝑋𝑖𝑗 to the point at which 𝐹 𝑖(𝑆𝑖𝑗(Λ𝑖)) = 0𝑖 along the direction 𝑈 𝑖𝑗.

3.4.1.1 Hyperplanes

For a hyperplane with normal vector 𝑛𝑗, define:
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𝛼𝑖 = 𝑋𝑖𝑗𝑛𝑗, 𝛽𝑖 = 𝑈 𝑖𝑗𝑛𝑗 (44)

The ray field is:

𝑅𝑖(𝑋𝑖𝑗, 𝑈 𝑖𝑗) = 𝛼𝑖

𝛽𝑖 (45)

Degenerate cases:

• If 𝛽𝑖 = 0: ray is parallel to the hyperplane (undefined)

• If 𝛼𝑖 = 0: ray origin is on the hyperplane

• If 𝛼𝑖

𝛽𝑖 < 0: intersection is behind the ray origin

Figure 27: Ray-hyperplane intersections. Rays either hit the surface (green X) or miss (extending to bounds).

3.4.1.2 Hyperspheres

For a hypersphere with radius 𝑟, the primal scalar field is:

𝐹 𝑖(𝑋𝑖𝑗) = 𝑋𝑖𝑗𝑋𝑖
𝑗 − 𝑟2 (46)

Substituting the ray equation and expanding:

0𝑖 = 𝐹 𝑖(𝑋𝑖𝑗 + Λ𝑖𝑈 𝑖𝑗)

= (𝑋𝑖𝑗 + Λ𝑖𝑈 𝑖𝑗)(𝑋𝑖
𝑗 + Λ𝑖𝑈 𝑖

𝑗 ) − 𝑟2

= (𝑈 𝑖𝑗𝑈 𝑖
𝑗 )Λ𝑖Λ𝑖 + (2𝑋𝑖𝑗𝑈 𝑖

𝑗 )Λ𝑖 + (𝑋𝑖𝑗𝑋𝑖
𝑗 − 𝑟2)

(47)

This is a quadratic in Λ𝑖. With coefficients:
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𝑎𝑖 = 𝑈 𝑖𝑗𝑈 𝑖
𝑗 , 𝑏𝑖 = 2𝑋𝑖𝑗𝑈 𝑖

𝑗 , 𝑐𝑖 = 𝑋𝑖𝑗𝑋𝑖
𝑗 − 𝑟2 (48)

The discriminant is Δ𝑖 = 𝑏𝑖𝑏𝑖 − 4𝑎𝑖𝑐𝑖, and solutions are:

Λ𝑖 = −𝑏𝑖 ±
√

𝑏𝑖𝑏𝑖 − 4𝑎𝑖𝑐𝑖

2𝑎𝑖 (49)

Cases:

• Δ𝑖 < 0: no intersection

• Δ𝑖 = 0: tangent (single point)

• Δ𝑖 > 0: two intersections; take smallest non-negative root

Figure 28: Ray-hypersphere intersections. Rays from outside hit the surface; rays from inside exit; some rays miss entirely.

3.4.1.3 Hypercones

For a cone with unit-axis 𝑎𝑗 and opening angle 𝜃:

𝐹 𝑖(𝑋𝑖𝑗) = (𝑋𝑖𝑗𝑎𝑗)
2 − cos(𝜃)2(𝑋𝑖𝑗𝑋𝑖

𝑗) (50)

The ray intersection yields a quadratic with coefficients:

𝑎𝑖 = (𝑈 𝑖𝑗𝑎𝑗)
2 − cos(𝜃)2𝑈 𝑖𝑗𝑈 𝑖

𝑗

𝑏𝑖 = 2𝑋𝑖𝑗𝑈 𝑖
𝑗 (𝑎𝑗 − cos(𝜃)2)

𝑐𝑖 = (𝑋𝑖𝑗𝑎𝑗)
2 − cos(𝜃)2(𝑋𝑖𝑗𝑋𝑖

𝑗)

(51)

Solutions follow the same quadratic formula, taking the smallest non-negative root.
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Figure 29: Ray-hypercone intersections. The cone extends from the apex; rays may hit either edge or pass through.

3.4.1.4 Hypercylinders

For a hypercylinder with radius 𝑟 extending along the last dimension, project to the first 𝑁 − 1 dimensions:

Let 𝑋′𝑖(𝑁−1) = 𝑋𝑖𝑗 for 𝑗 ∈ [1, 𝑁 − 1] and 𝑈 ′𝑖(𝑁−1) = 𝑈 𝑖𝑗 for 𝑗 ∈ [1, 𝑁 − 1].

The quadratic coefficients become:

𝑎𝑖 = 𝑈 ′𝑖(𝑁−1)𝑈 ′𝑖
(𝑁−1), 𝑏𝑖 = 2𝑋′𝑖(𝑁−1)𝑈 ′𝑖

(𝑁−1), 𝑐𝑖 = 𝑋′𝑖(𝑁−1)𝑋′𝑖
(𝑁−1) − 𝑟2 (52)

3.4.1.5 Composite CSG Regions

The analytical method can be extended to support any CSG Region that is composed entirely of primitives whose RayField 

is defined.

Given a batch of rays with origins 𝑋𝑖𝑗 and unit directions 𝑈 𝑖𝑗, the algorithm enumerates all 𝐾 primitive halfspaces {𝐹𝑘} in 

the CSG tree. For each primitive, we evaluate its RayField 𝑅𝑖
𝑘 to obtain candidate intersection distances 𝑑𝑖

𝑘. The final result 

selects the nearest distance where the ray actually intersects the composite region’s boundary.
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AnalyticalRayCast(𝑋𝑖𝑗, 𝑈 𝑖𝑗, 𝐹 𝑖):
1 {𝐹𝑘}𝐾

𝑘=1 ← enumerate halfspaces in CSG tree

2 for 𝑘 ← 1 to 𝐾 do

3 𝑑𝑖
𝑘 ← 𝑅𝑖

𝑘(𝑋𝑖𝑗, 𝑈 𝑖𝑗) // evaluate RayField

4 𝑑𝑖
∗ ← ∞

5 for 𝑘 ← 1 to 𝐾 do

6 if 𝐹 𝑖(𝑆𝑖𝑗(𝑑𝑖
𝑘)) = 0𝑖 and 𝑑𝑖

𝑘 < 𝑑𝑖
∗ then

7 𝑑𝑖
∗ ← 𝑑𝑖

𝑘

8 return 𝑑𝑖
∗

Algorithm 1: Analytical ray casting for composite CSG regions.

3.4.2 Bracket and Bisect Algorithm

For complex CSG regions without analytical solutions, numerical methods find intersections iteratively. The bracket-and-

bisect approach proceeds in two phases: first bracketing to find an interval containing a root, then bisection to refine it.

3.4.2.1 Ray Bracketing

Bracketing marches along each ray in fixed steps until the field value changes sign, indicating the isosurface lies within the 

current interval. The inputs are ray origins 𝑋𝑖𝑗, unit directions 𝑈 𝑖𝑗, the scalar field 𝐹 𝑖, step size Δ𝜆, and maximum search 

distance 𝜆max. The algorithm maintains left and right bracket positions 𝐿𝑖 and 𝑅𝑖, using a mask 𝑀 𝑖 to selectively update 

only those rays that haven’t yet found a sign change.

RayBracket(𝑋𝑖𝑗, 𝑈 𝑖𝑗, 𝐹 𝑖, Δ𝜆, 𝜆max):
1 𝐿𝑖 ← 0𝑖 // left bracket

2 𝑅𝑖 ← 𝐿𝑖 // right bracket

3 𝐹 𝑖
𝐿 ← 𝐹 𝑖(𝑆𝑖𝑗(𝐿𝑖))

4 while 𝑅𝑖 < 𝜆max do

5 𝑅𝑖 ← 𝐿𝑖 + Δ𝜆
6 𝐹 𝑖

𝑅 ← 𝐹 𝑖(𝑆𝑖𝑗(𝑅𝑖))

7 𝑀 𝑖 ← 𝟙𝑖{𝐹 𝑖
𝐿𝐹 𝑖

𝑅 ≥ 0𝑖} // no sign change yet

8 𝐿𝑖 ← 𝑀 𝑖𝑅𝑖 + (1 − 𝑀 𝑖)𝐿𝑖

9 𝐹 𝑖
𝐿 ← 𝑀 𝑖𝐹 𝑖

𝑅 + (1 − 𝑀 𝑖)𝐹 𝑖
𝐿

10 return (𝐿𝑖, 𝑅𝑖)

Algorithm 2: Ray bracketing: march along rays until a sign change is detected.
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𝜆

𝐹 𝑖(𝑆𝑖𝑗(𝜆))

march direction

bracketed root

𝐿𝑖 𝑅𝑖

𝐹(𝐿)𝐹(𝑅) > 0

𝐹(𝐿)𝐹(𝑅) < 0

Figure 30: Ray bracketing: marching along the ray in steps of Δ𝜆 until a sign change is detected, indicating the isosurface 
lies within the bracket [𝐿𝑖, 𝑅𝑖].

3.4.2.2 Ray Bisection

Once a bracket [𝐿𝑖, 𝑅𝑖] containing the isosurface is established, bisection refines it by repeatedly halving the interval. At each 

iteration, the midpoint 𝐶𝑖 is evaluated and the bracket is narrowed to whichever half contains the sign change. The mask 

𝑀 𝑖 determines whether the root lies in the right half (when 𝐹 𝑖
𝐿 and 𝐹 𝑖

𝐶 have the same sign) or the left half. The algorithm 

runs for a fixed number of iterations 𝑛; the final bracket width is Δ𝜆/2𝑛 where Δ𝜆 is the initial bracket width from the 

marching phase.

RayBisect(𝐿𝑖, 𝑅𝑖, 𝐹 𝑖, 𝑛):
1 𝐹 𝑖

𝐿 ← 𝐹 𝑖(𝑆𝑖𝑗(𝐿𝑖))
2 for 𝑘 ← 1 to 𝑛 do

3 𝐶𝑖 ← 𝐿𝑖+𝑅𝑖

2

4 𝐹 𝑖
𝐶 ← 𝐹 𝑖(𝑆𝑖𝑗(𝐶𝑖))

5 𝑀 𝑖 ← 𝟙𝑖{𝐹 𝑖
𝐿𝐹 𝑖

𝐶 > 0𝑖} // root in right half

6 𝐿𝑖 ← 𝑀 𝑖𝐶𝑖 + (1 − 𝑀 𝑖)𝐿𝑖

7 𝑅𝑖 ← 𝑀 𝑖𝑅𝑖 + (1 − 𝑀 𝑖)𝐶𝑖

8 𝐹 𝑖
𝐿 ← 𝑀 𝑖𝐹 𝑖

𝐶 + (1 − 𝑀 𝑖)𝐹 𝑖
𝐿

9 return 𝑅𝑖

Algorithm 3: Ray bisection: iteratively halve the bracket to locate roots.
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𝜆

𝐹 𝑖(𝑆𝑖𝑗(𝜆))

𝐿𝑖
0 𝑅𝑖

0𝐶𝑖
1

𝐶𝑖
2

𝐶𝑖
3

root

Figure 31: Ray bisection: iteratively halving the bracket [𝐿𝑖, 𝑅𝑖] to locate the root. Each iteration evaluates the midpoint 
𝐶𝑖 and updates the bracket to the half containing the sign change.

3.4.3 Newton’s Method

For autodifferentiable fields, Newton’s method provides quadratic convergence by using the gradient to predict where the 

function crosses zero. Given ray origins 𝑋𝑖𝑗 and directions 𝑈 𝑖𝑗, the algorithm iteratively refines position estimates. Each 

iteration computes the field value 𝑓 𝑖 and the directional derivative 𝑔𝑖 = ∇𝐹 𝑖𝑈 𝑖𝑗 along the ray, then applies the Newton 

update to move toward the root. A step size parameter 𝛼 allows damped updates for stability. Rays with zero gradient are 

nudged by 𝛿 to escape degenerate points.

NewtonRayCast(𝑋𝑖𝑗, 𝑈 𝑖𝑗, 𝐹 𝑖, 𝑛, 𝛼, 𝛿):
1 𝑃 𝑖𝑗 ← 𝑋𝑖𝑗

2 for 𝑘 ← 1 to 𝑛 do

3 𝑓 𝑖 ← 𝐹 𝑖(𝑃 𝑖𝑗)

4 𝑔𝑖 ← ∇𝐹 𝑖(𝑃 𝑖𝑗)𝑈 𝑖𝑗 // directional derivative

5 if 𝑔𝑖 = 0 then 𝑔𝑖 ← 𝛿 // nudge degenerate cases

6 𝑃 𝑖𝑗 ← 𝑃 𝑖𝑗 − 𝛼𝑓𝑖

𝑔𝑖 𝑈 𝑖𝑗

7 return 𝑃 𝑖𝑗

Algorithm 4: Newton’s method: use gradient information to converge quadratically.
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𝜆

𝐹 𝑖(𝑆𝑖𝑗(𝜆))

𝜆0 𝜆1 𝜆2 𝜆∗

tangent: ∇𝑓𝒅

Figure 32: Newton’s method: using the tangent line (directional derivative ∇𝑓𝒅) to compute successive approximations. 
Exhibits quadratic convergence—each iteration roughly doubles the number of correct digits.

3.5 Analysis Modules

3.5.1 Volume Estimation (Monte Carlo)

The algorithm samples 𝑁  points uniformly from a bounding domain 𝐷 and evaluates the scalar field 𝐹 𝑖 at each point. Points 

with 𝐹 𝑖 ≤ 0 lie inside the region. The volume ratio equals the fraction of interior points, scaled by the domain volume.

MonteCarloVolume(𝐹 𝑖, 𝐷, 𝑁):
1 𝑋𝑖𝑗 ∼ Uniform(𝐷) // sample 𝑁  points

2 𝑉 𝑖 ← 𝐹 𝑖(𝑋𝑖𝑗)

3 𝐶 ← ∑𝑁
𝑖=1 𝟙𝑖{𝑉 𝑖 ≤ 0𝑖}

4 return Vol(𝐷)𝐶/𝑁

Algorithm 5: Monte Carlo volume estimation.

The volume approximation:

𝑉 (𝑅𝑖)
𝑉 (𝐷)

≈
∑𝑁

𝑗=1 𝟙𝑖(𝐹 𝑖(𝑋𝑖𝑗) ≤ 0𝑖)
𝑁

(53)

42



Phlux Book

Figure 33: Monte Carlo estimation of 𝜋. Random points in [0, 1]2 are classified as inside (blue) or outside (orange) a quarter 
circle. As 𝑁  increases, the estimate converges to 𝜋 with error 𝑂(1/

√
𝑁).

3.5.1.1 Error Analysis

The error decreases as 𝑂( 1√
𝑁

). The standard error is:

𝜎𝑉 ≈ 𝑉 (𝐷)√𝑝(1 − 𝑝)
𝑁

(54)

where 𝑝 = 𝑉 (𝑅𝑖)
𝑉 (𝐷)  is the proportion of domain occupied by the region.

3.5.2 Gradient Computation

The gradient of 𝐹 𝑖 at origins 𝑋𝑖𝑗 is:
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∇𝐹 𝑖(𝑋𝑖𝑗) = 𝜕𝑗𝐹 𝑖(𝑋𝑖𝑗) =

[



𝜕𝑗𝐹 𝑖(𝑋1𝑗)

𝜕𝑗𝐹 𝑖(𝑋2𝑗)
⋮

𝜕𝑗𝐹 𝑖(𝑋𝑚𝑗)]





(55)

Gradients are computed via automatic differentiation through the Burn framework.

3.5.2.1 Surface Normals

For origins 𝑋𝑖𝑗 on isosurface 𝐹 𝑖(𝑋𝑖𝑗) = 𝑐, the unit normal is:

𝑛̂ =
∇𝐹 𝑖(𝑋𝑖𝑗)
|∇𝐹 𝑖(𝑋𝑖𝑗)|

(56)

3.5.3 Gradient Descent

Gradient descent finds points inside a region by iteratively stepping in the direction of steepest descent. Starting from origins 

𝑋𝑖𝑗, the algorithm updates positions:

𝑋𝑖𝑗
𝑘+1 = 𝑋𝑖𝑗

𝑘 − 𝛼∇𝐹 𝑖(𝑋𝑖𝑗
𝑘 ) (57)

where 𝛼 is the step size. The process terminates when points satisfy the stopping condition (e.g., 𝐹 𝑖(𝑋𝑖𝑗) < 0) or after a 

maximum number of steps.

Figure 34: Gradient descent from an exterior point toward the region interior. Each step follows the negative gradient 
direction. Purple points show intermediate steps; green indicates convergence.
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3.5.4 Root Finding (Newton’s Method)

To find points on the isosurface (not just inside), Newton’s method provides fast convergence. The update rule for finding 

𝐹 𝑖(𝑋𝑖𝑗) = 0:

𝑋𝑖𝑗
𝑘+1 = 𝑋𝑖𝑗

𝑘 − 𝐹 𝑖(𝑋𝑖𝑗
𝑘 )

∇𝐹 𝑖(𝑋𝑖𝑗
𝑘 )

‖∇𝐹 𝑖(𝑋𝑖𝑗
𝑘 )‖2

(58)

This is the multi-dimensional Newton step projected along the gradient direction.

Figure 35: Newton root finding converging to the isosurface. The path shows rapid convergence characteristic of Newton’s 
method. The green marker indicates successful convergence to the surface.

3.5.5 Adaptive Bounding

The bounding tree algorithm recursively subdivides space to find a tight bounding box around a region. Each cell is classified 

as:

• Inside: entirely contained within the region

• Outside: entirely outside the region

• Boundary: intersects the isosurface

Cells are subdivided until reaching maximum depth or becoming homogeneous. The tight bounding box is computed from 

all Inside and Boundary leaf cells.
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Figure 36: Adaptive quadtree bounding of a gear region. Green cells are inside, orange are outside, yellow intersect the 
boundary. The green outline shows the computed tight bounding box.

3.5.5.1 Cell Classification

Given a bounding box 𝐷 with bounds [𝑥𝑗
min, 𝑥𝑗

max], we generate a uniform grid of 𝑠𝑛 sample points where 𝑠 is the samples 

per dimension. For the 𝑖-th sample point in the grid:

𝑋𝑖𝑗 = 𝑥𝑗
min + 𝑇 𝑖𝑗(𝑥𝑗

max − 𝑥𝑗
min) (59)

where 𝑇 𝑖𝑗 ∈ [0, 1]𝑚×𝑛 is the normalized grid coordinate for sample 𝑖 in dimension 𝑗.

The cell is classified by evaluating 𝐹 𝑖(𝑋𝑖𝑗):

• Inside: 𝐹 𝑖(𝑋𝑖𝑗) < 0∀𝑖
• Outside: 𝐹 𝑖(𝑋𝑖𝑗) > 0∀𝑖
• Boundary: otherwise (mixed signs or samples On surface)

3.5.5.2 Subdivision Scheme

Each Boundary cell is subdivided into 2𝑛 children by splitting along each axis at the midpoint. In 2D this produces 4 

quadrants (quadtree); in 3D it produces 8 octants (octree), and so on.

For any intermediate bounding box with center 𝑐𝑗 = 𝑥𝑗
min+𝑥𝑗

max
2 , the 𝑘-th child (𝑘 ∈ [0, 2𝑛 − 1]) has bounds determined by the 

binary representation of 𝑘. For each dimension 𝑗:

𝑥(𝑘)𝑗
min = {𝑥𝑗

min if bit 𝑗 of 𝑘 = 0
𝑐𝑗 otherwise

(60)
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𝑥(𝑘)𝑗
max = {𝑐𝑗 if bit 𝑗 of 𝑘 = 0

𝑥𝑗
max otherwise (61)

3.5.5.3 Algorithm

FindBoundingTree(𝐹 𝑖, 𝐷, 𝑑max, 𝑠):
1 nodes ← ∅, leaves ← ∅
2 SubdivideRecursive(𝐷, 0) // start at root with depth 0

3 return (nodes, leaves)
4

5 SubdivideRecursive(𝐵, 𝑑):

6 𝑋𝑖𝑗 ← uniform grid of 𝑠𝑁  samples in 𝐵
7 𝑣𝑖 ← 𝐹 𝑖(𝑋𝑖𝑗)

8 status ← Classify(𝑣𝑖)
9 if status = Boundary and 𝑑 < 𝑑max then

10 {𝐵𝑘}2𝑁−1
𝑘=0 ← split 𝐵 into 2𝑁  children

11 for 𝑘 ← 0 to 2𝑁 − 1 do

12 SubdivideRecursive(𝐵𝑘, 𝑑 + 1)

13 else

14 append (𝐵, status) to leaves

Algorithm 6: Adaptive bounding tree construction. The algorithm recursively subdivides Boundary cells until reaching 
maximum depth 𝑑max or finding homogeneous (Inside/Outside) cells.

3.6 Mesh Extraction
Mesh extraction converts an implicit surface representation (the zero level set of a scalar field) into an explicit geometric 

representation suitable for rendering, physics simulation, or export to standard formats.

3.6.1 Simplicial Complexes

The output of mesh extraction is a simplicial complex—a collection of simplices that approximate the isosurface. A 𝑘-simplex 

is the convex hull of 𝑘 + 1 non-degenerate points:

𝑘 Name Vertices Use

0 Point 1 Isolated samples

1 Segment 2 Curves, contours

2 Triangle 3 Surface meshes

3 Tetrahedron 4 Volume meshes

In 𝑛 dimensions, the isosurface 𝐹 𝑖 = 𝑐 is an (𝑛 − 1)-dimensional manifold. Mesh extraction approximates this manifold using 

(𝑛 − 1)-simplices:

• 2D fields: Extract 1-simplices (line segments) forming a polyline contour

• 3D fields: Extract 2-simplices (triangles) forming a surface mesh

3.6.2 The Marching Algorithm

The marching family of algorithms (marching squares, marching cubes) share a common structure:

1. Discretize the domain into a regular grid of hypercubes

2. Evaluate the scalar field at each grid vertex
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3. Classify each cell by which corners are inside (𝐹 𝑖 < 0) vs outside (𝐹 𝑖 ≥ 0)

4. Lookup the simplex configuration from a precomputed table

5. Interpolate vertex positions along edges where the isosurface crosses

The key insight is that each cell’s topology depends only on the sign pattern of its corners, not the actual field values. This 

reduces the problem to a finite lookup table indexed by a bit pattern.

3.6.3 Hypercube Classification

Each hypercube corner is classified as inside (bit = 1) or outside (bit = 0). The corner bits are packed into an integer index:

index = ∑
2𝑛−1

𝑘=0
bit𝑘 ⋅ 2𝑘 (62)

Dimension Corners Index bits Configurations

2D (squares) 4 4 24 = 16

3D (cubes) 8 8 28 = 256 (15 unique by symmetry)

The index refers to the bit pattern of the corner classification. For example, in 2D, the index 6 corresponds to the bit pattern 

0110, indicating that the 1st and 2nd corners are inside and the 3rd and 0th corners are outside. This, and the remaining 

configurations of 4 bits are shown below:

20 21

2223

inside outside

index = ∑𝑘 bit𝑘 ⋅ 2𝑘

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 37: Marching squares: (left) cell with corner bit positions, (right) all 16 configurations with inside regions shaded and 
contour segments in green.

This process is naturally extended to 3D, where each cell is classified by its 8 corners. In this example, the hypercube is 

index 105, corresponding to the bit pattern 01101001, indicating that the 0th, 3rd, 5th, and 6th corners are inside and the 

rest are outside. This, and the remaining configurations of 8 bits, deduplicated by symmetries are shown below:
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20 21

2223

24 25

2627

inside outside

0 1 2 3 6

7 15 22 23 25

27 30 60 105 255

Figure 38: Marching cubes: (left) cell with 8 corners labeled by bit position, (right) representative cases showing triangulated 
surfaces. The 256 configurations reduce to 15 unique cases by symmetry. Triangulation of the surfaces in the diagram is 

elided for visual clarity.

3.6.4 Edge Interpolation

When the isosurface crosses an edge between vertices 𝑣1, 𝑣2 with field values 𝑓1, 𝑓2, linear interpolation locates the crossing 

point:

𝑝 = 𝑣1 + 𝑡(𝑣2 − 𝑣1) where 𝑡 = −𝑓1
𝑓2 − 𝑓1

(63)

This assumes locally linear field behavior. Higher-order interpolation could improve accuracy but is not yet implemented.

3.6.5 Resolution

The mesh approximation improves with grid resolution, but at increasing computational cost. Doubling resolution quadruples 

cell count in 2D and octuples it in 3D.
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Figure 39: Effect of grid resolution on mesh extraction. A 12-tooth gear extracted at 𝑛 = 5, 10, 25, 100. Low resolution 
produces a coarse approximation; higher resolution captures fine detail.
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3.6.6 Algorithms

MarchingSquares(𝐹 𝑖, 𝑛𝑥, 𝑛𝑦, 𝐷):
1 𝑋𝑖𝑗 ← grid over 𝐷 with (𝑛𝑥 + 1) × (𝑛𝑦 + 1) vertices

2 𝑉 𝑖𝑗 ← 𝐹 𝑖(𝑋𝑖𝑗) // evaluate field at vertices

3 segments ← ∅

4 for each cell (𝑐𝑥, 𝑐𝑦) in grid do

5 idx ← ∑3
𝑘=0 𝟙{𝑉𝑘 < 0}2𝑘

// 4-bit classification

6 edges ← EdgeTable[idx]
7 for each edge pair in edges do

8 𝑝 ← Interpolate(𝑣1, 𝑣2, 𝑉1, 𝑉2)
9 append 𝑝 to segments

10 return segments

Algorithm 7: Marching squares extracts a polyline contour from a 2D scalar field.

MarchingCubes(𝐹 𝑖, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧, 𝐷):
1 𝑋𝑖𝑗 ← grid over 𝐷 with (𝑛𝑥 + 1) × (𝑛𝑦 + 1) × (𝑛𝑧 + 1) vertices

2 𝑉 𝑖𝑗 ← 𝐹 𝑖(𝑋𝑖𝑗) // evaluate field at vertices

3 triangles ← ∅

4 for each voxel (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) in grid do

5 idx ← ∑7
𝑘=0 𝟙{𝑉𝑘 < 0}2𝑘

// 8-bit classification

6 config ← TriTable[idx]
7 for each triangle in config do

8 for each edge in triangle do

9 𝑝 ← Interpolate(𝑣1, 𝑣2, 𝑉1, 𝑉2)
10 append triangle to triangles

11 return triangles

Algorithm 8: Marching cubes extracts a triangle mesh from a 3D scalar field.

3.6.6.1 Tensor-Native Implementation

The naïve implemenatation of the marching algorithm iterates over hypercubes sequentially. crater.rs exploits tensor 

parallelism using convolutions. Instead of looping over cells, a specially constructed convolution kernel extracts all corner 

values simultaneously.

3.6.6.1.1 2D: Using conv2d

A 4-channel kernel 𝐾 ∈ ℝ4×1×2×2 extracts corner values, where each output channel selects one corner via a one-hot 2 × 2 

filter. Applying conv2d to the scalar field values produces a tensor containing all corner values for every hypercube:

corners = 𝐾 ∗ 𝑉 → shape 1 × 4 × 𝑛𝑥 × 𝑛𝑦 (64)

The cell indices are then computed via weighted sum:

idx𝑖,𝑗 = ∑
3

𝑘=0
𝟙{(corners)𝑘 < 0} ⋅ 2𝑘 (65)

3.6.6.1.2 3D: Using conv3d

An 8-channel kernel 𝐾 ∈ ℝ8×1×2×2×2 extracts the 8 voxel corners:
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corners = 𝐾 ∗ 𝑉 → shape 1 × 8 × 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 (66)

idx𝑖,𝑗,𝑘 = ∑
7

𝑐=0
𝟙{(corners)𝑐 < 0} ⋅ 2𝑐 (67)

—

3.7 Rescaling Transformations
Rescaling transformations provide mathematically precise control over scalar field output ranges through univariate functions.

Given a scalar field 𝐹 𝑖 : ℝ𝑚×𝑛 → ℝ𝑚, a rescaling transformation produces:

𝐺𝑖(𝒙) = 𝜂(𝐹 𝑖(𝒙)) (68)

where 𝜂 : ℝ → ℝ is a univariate function applied element-wise.

3.7.1 Function Classes

1. Hyperbolic Tangent Family: Standard and scaled tanh functions

2. Logistic (Sigmoid) Family: Standard and scaled sigmoid functions

3. Arctangent Family: Standard and scaled arctan functions

4. Error Function: Gaussian-like transition with erf approximation

5. Soft Clipping: Linear preservation with asymptotic bounds

3.7.2 Properties of Rescaling

1. Isosurface Preservation: If 𝒮︀𝑐 = {𝒙 : 𝐹 𝑖(𝒙) = 𝑐} is an isosurface of 𝐹 𝑖, then the transformed field has isosurfaces at 𝜂(𝑐)
2. Monotonicity: For strictly monotonic 𝜂, relative ordering of field values is preserved

3. Bounded Output: Many rescaling functions map ℝ to bounded intervals

4. Differentiability: Most rescaling functions are smooth 𝐶∞

3.7.3 Rescaling for Ray Cast Stability

Rescaling is crucial for numerical stability in ray casting. Consider 𝑓(𝜆) representing the scalar field along a ray. Ray casting 

finds a root of 𝑓(𝜆) = 0 to tolerance 𝜀.

The floating point number line is not uniformly distributed—differences between representable numbers increase with 

magnitude. For high-gradient fields, no representable 𝜆 may satisfy tolerance 𝜀.

Rescaling maps field values to a closed interval, vertically compressing the field. This ensures at least one 𝜆 exists satisfying 

the tolerance, and for continuous fields, the converged 𝜆 is at most one floating point number from the true root.
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𝜆

𝑓(𝜆)

+𝜀

−𝜀

no 𝜆𝑖 in tolerance band

gap

𝜆

𝜂(𝑓(𝜆))

both 𝜆𝑖 satisfy tolerance

|Error| ≤ 𝜆𝑖+1 − 𝜆𝑖

[−1, 1]

Figure 40: Floating point precision and rescaling. Top: a steep field 𝑓(𝜆) may have no representable 𝜆𝑖 within the tolerance 
band ±𝜀 because floating point gaps widen with magnitude. Bottom: rescaling via 𝜂 = tanh compresses the field, reducing 

the gradient near the root so that at least one 𝜆𝑖 satisfies the tolerance.
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4 XS: Nuclear Cross Section Service

Coming Soon

The xs.rs crate provides nuclear cross section data services for particle transport simulations.

Documentation is under development.
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5 Rott: Row-Oriented Tensor Types

Data are considered “Row-oriented” if each row of the dataset is independent from the others. rott.rs enables a “structure-

of-arrays” interface for common operations on row-oriented data. The core abstraction is a Row-Oriented Tensor Type (Rott 

- a Rust trait), which owns one or more tensor objects where the 0th dimensions of all tensors are equal.

5.1 Row-Oriented Tensor Type (ROTT)
A Row-Oriented Tensor Type (ROTT) owns one or more tensor objects where the 0th dimensions of all tensors are all equal.

Consider rank-2 tensors (matrices) of the form 𝑋𝑖𝑗 ∈ ℝ𝑚×𝑛, representing 𝑚 independent rows with data dimension 𝑛. Such 

objects can represent a batch of particle positions or velocities (𝑛 = 3), energies (𝑛 = 1), and more. While the discussion 

herein is limited to tensors of rank 2, this is not a mandate. A Rott may own tensors of any rank ≥ 1.

We collapse these tensors into a compound type, employing a structure-of-arrays approach:

𝔸𝑖 = (𝑋𝑖𝑥, 𝑌 𝑖𝑦, 𝑍𝑖𝑧, …) (69)

The 𝑖th “row” of 𝔸𝑖 can be thought of as a slice across the 0th index of all constituent tensors. The 𝑖th row is a collection 

of tensors, each of which has a rank reduced by 1. This is analogous to slices of single tensors, but extended to a collection 

of multiple, related tensors.

The bb notation is used throughout to denote a type as a Rott. Attributes of these objects are notated with the . syntax:

𝔸.𝑋𝑖𝑢 (70)

Let’s implement a simple representation of some particles:

#[derive(Clone)]

pub struct ParticleBatch<B: Backend> {

    pub positions: Tensor<B, 2>,  // [batch, 3]

    pub directions: Tensor<B, 2>, // [batch, 3]

    pub energies: Tensor<B, 1>,   // [batch]

}

In the above, we associate three tensors: positions, directions, and energies, each of which has their own rank and shape. 

A row of this Rott is a triplet of a single particle’s position (3-vector), direction (3-vector), and energy (scalar).
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Figure 41: A ParticleBatch with 3 particles. The highlighted row represents a single particle.

The cardinality of such types is equal to the size of the 0-th dimension, notated as |𝔸𝑖|.

let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[1.0, 2.0, 3.0], [0.5, 1.5, 2.5], [2.0, 0.0, 1.0]], device),

    directions: Tensor::from_floats(

        [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],

        device,

    ),

    energies: Tensor::from_floats([1.5, 2.0, 0.8], device),

};
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let cardinality = particles.cardinality(); // |P^i| = 3

assert_eq!(cardinality, 3);

This patterns enables more than tensor organization; it offers higher-level operations that “feel” like single-tensor operations, 

but really act over all constituent tensors.

5.2 Operations on ROTTs

5.2.1 Predicate Notation

Boolean masks are created from predicates using the Iverson bracket [𝑃 ]. The resulting mask inherits the shape of the 

operands in the predicate.

For a predicate 𝑃 𝑖 evaluated element-wise over index 𝑖:

[𝑃 𝑖] = {1 if 𝑃 𝑖 is true
0 if 𝑃 𝑖 is false (71)

The output is a boolean tensor 𝑚𝑖 ∈ {0, 1}𝑀  where 𝑀  is the size of the indexed dimension.

let energies: Tensor<B, 1> = Tensor::from_floats([0.5, 2.0, 1.5, 0.3], device);

// m^i = [E^i > 1.0]

let mask = energies.greater_elem(1.0);

// [false, true, true, false]

let expected: Tensor<B, 1, Bool> =

    Tensor::from_data(TensorData::from([false, true, true, false]), device);

assert_eq!(mask.to_data(), expected.to_data());

5.2.2 select

Masked selection extracts rows of the Rott into a smaller Rott, according to a mask. Given a mask 𝑚𝑖 ∈ {0, 1}𝑀 , the selection 

operation for a single tensor 𝑋𝑖𝑗

𝑋𝑖𝑗[𝑚𝑖] = 𝑋true(𝑚𝑖)𝑗 (72)

where true(𝑚𝑘) = {𝑘 : 𝑚𝑘 = 1} is the set of indices where the mask is true.

The tensor cardinality is reduced:

|𝐴𝑖[𝑚𝑖]| = ∑
𝑖

𝑚𝑖 ≤ |𝐴𝑖| (73)

The same operation can be broadcasted over a Rott input:

𝔸𝑖[𝑚𝑖] = (𝑋𝑖𝑗[𝑚𝑖], 𝑌 𝑖𝑘[𝑚𝑖], 𝑍𝑖𝑙[𝑚𝑖]) (74)

let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [1.0, 0.0, 0.0],

            [2.0, 0.0, 0.0],

            [3.0, 0.0, 0.0],

            [4.0, 0.0, 0.0],

        ],

        device,

    ),

    directions: Tensor::from_floats(
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        [

            [1.0, 0.0, 0.0],

            [0.0, 1.0, 0.0],

            [0.0, 0.0, 1.0],

            [1.0, 0.0, 0.0],

        ],

        device,

    ),

    energies: Tensor::from_floats([0.5, 2.0, 1.5, 0.3], device),

};

// m^i = [E^i > 1.0]

let mask = particles.energies.clone().greater_elem(1.0);

// P^i[m^i] -> cardinality reduced from 4 to 2

let selected = particles.select(mask);

assert_eq!(selected.cardinality(), 2);

assert_eq!(

    selected.energies.to_data().to_vec::<f32>().unwrap(),

    vec![2.0, 1.5]

);
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Figure 42: Masked selection extracts rows where the mask is true, producing a smaller Rott.

5.2.3 mask_where

Masked where selects between two ROTTs element-wise based on a mask:

mask_where(𝔸𝑖, 𝑚𝑖, 𝔹𝑖) = {𝔹𝑖 if 𝑚𝑖 = 1
𝔸𝑖 if 𝑚𝑖 = 0 (75)

let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [1.0, 0.0, 0.0],

            [2.0, 0.0, 0.0],

            [3.0, 0.0, 0.0],

            [4.0, 0.0, 0.0],

        ],

        device,

    ),

    directions: Tensor::from_floats(

        [

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

        ],

        device,

    ),

    energies: Tensor::from_floats([1.0, 2.0, 3.0, 4.0], device),

};
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let particles_to_overwrite: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [9.0, 9.0, 9.0],

            [9.0, 9.0, 9.0],

            [9.0, 9.0, 9.0],

            [9.0, 9.0, 9.0],

        ],

        device,

    ),

    directions: Tensor::from_floats(

        [

            [0.0, 1.0, 0.0],

            [0.0, 1.0, 0.0],

            [0.0, 1.0, 0.0],

            [0.0, 1.0, 0.0],

        ],

        device,

    ),

    energies: Tensor::from_floats([1.5, 2.5, 3.5, 4.5], device),

};

// Mask: overwrite indices 1 and 2

let overwrite: Tensor<B, 1, Bool> = Tensor::from_data([false, true, true, false], device);

// Select initial values where mask=false, updated values where mask=true

let result = particles.mask_where(overwrite, particles_to_overwrite);

// Energies: [1.0, 2.5, 3.5, 4.0] - particles 1,2 have new energies, positions and directions

assert_eq!(

    result.energies.clone().into_data().to_vec::<f32>().unwrap(),

    vec![1.0, 2.5, 3.5, 4.0]

);
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Figure 43: Masked where selects between two ROTTs based on a mask. Rows where 𝑚𝑖 = 0 come from 𝔸𝑖 (green), rows 
where 𝑚𝑖 = 1 come from 𝔹𝑖 (cyan).

5.2.4 slice

Slicing extracts a contiguous range of rows from a Rott, returning a smaller Rott:

𝔸𝑖[𝑎 : 𝑏] = 𝔸[𝑎,𝑏) (76)

where 𝑎 and 𝑏 are integer bounds with 0 ≤ 𝑎 ≤ 𝑏 < |𝔸𝑖|.

let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [0.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [2.0, 0.0, 0.0],
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            [3.0, 0.0, 0.0],

            [4.0, 0.0, 0.0],

        ],

        device,

    ),

    directions: Tensor::from_floats(

        [

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

        ],

        device,

    ),

    energies: Tensor::from_floats([1.0, 2.0, 3.0, 4.0, 5.0], device),

};

// P^i[1:4] - extract indices 1, 2, 3

let sliced = particles.slice(1, 4);

assert_eq!(sliced.cardinality(), 3);

assert_eq!(

    sliced.energies.clone().into_data().to_vec::<f32>().unwrap(),

    vec![2.0, 3.0, 4.0]

);
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Figure 44: Slicing extracts a contiguous range of rows (indices 1–3 highlighted) into a new ROTT.

5.2.5 reorder

Reordering permutes rows according to an index tensor:

reorder(𝔸𝑖, 𝜎𝑖) = 𝔸𝜎𝑖 (77)

where 𝜎𝑖 is a permutation of indices 𝑖.

let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0]], device),

    directions: Tensor::from_floats(

        [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],

        device,

    ),

    energies: Tensor::from_floats([1.0, 2.0, 3.0], device),

};

// Reorder: reverse the batch

let indices: Tensor<B, 1, Int> = Tensor::from_ints([2, 1, 0], device);

let reordered = particles.reorder(indices);

assert_eq!(reordered.cardinality(), 3);
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assert_eq!(

    reordered

        .energies

        .clone()

        .into_data()

        .to_vec::<f32>()

        .unwrap(),

    vec![3.0, 2.0, 1.0]

);

reorder(
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Figure 45: Reordering permutes rows according to an index tensor 𝜎𝑖, here reversing the order with 𝜎 = [2, 1, 0].

5.2.6 concat

Concatenation joins multiple ROTTs along the batch dimension:

concat(𝔸𝑖, 𝔹𝑖) = ℂ𝑖 (78)

where |ℂ𝑖| = |𝔸𝑖| + |𝔹𝑖|.

let batch_a: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], device),

    directions: Tensor::from_floats([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0]], device),

    energies: Tensor::from_floats([1.0, 2.0], device),

};

let batch_b: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], device),

    directions: Tensor::from_floats(

        [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],

        device,

    ),

    energies: Tensor::from_floats([3.0, 4.0, 5.0], device),

};

// concat(A^i, B^i) - combine batches

let combined = ParticleBatch::concat(&[batch_a, batch_b]);

assert_eq!(combined.cardinality(), 5);

assert_eq!(

    combined

        .energies

        .clone()

        .into_data()

        .to_vec::<f32>()

        .unwrap(),

    vec![1.0, 2.0, 3.0, 4.0, 5.0]

);
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Figure 46: Concatenation joins two ROTTs along the batch dimension. Colors show the origin of each row in the result.

5.2.7 concat_bounded

Bounded concatenation combines two ROTTs up to a maximum size, returning any overflow:

concat_bounded(𝔸𝑖, 𝔹𝑖, 𝑛) = (ℂ𝑖, ℝ𝑖) (79)

where |ℂ𝑖| = min(|𝔸𝑖| + |𝔹𝑖|, 𝑛) and ℝ𝑖 contains any remaining elements.

let batch_a: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], device),

    directions: Tensor::ones([2, 3], device),

    energies: Tensor::from_floats([1.0, 2.0], device),

};

let batch_b: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], device),

    directions: Tensor::ones([3, 3], device),

    energies: Tensor::from_floats([3.0, 4.0, 5.0], device),

};

// Concatenate with max_size=4, overflow goes to remainder

let (merged, remainder) = batch_a.concat_bounded(batch_b, 4);

assert_eq!(merged.cardinality(), 4);

assert!(remainder.is_some());

assert_eq!(remainder.as_ref().unwrap().cardinality(), 1);
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Figure 47: Bounded concatenation joins two ROTTs along the batch dimension, up to a maximum size. Colors show the 
origin of each row in the result.

5.2.8 partition_uniform

Uniform partitioning divides a Rott into smaller Rotts of at most a specified maximum size:

partition_uniform(𝔸𝑖, 𝑛) = [𝔸𝛼
0 , 𝔸𝛽

1, …, 𝔸𝜔
𝑘] (80)

where each |𝔸𝑖
𝑗| ≤ 𝑛 for all 𝑗, and all batches except possibly the last have exactly 𝑛 elements.
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let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [0.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [2.0, 0.0, 0.0],

            [3.0, 0.0, 0.0],

            [4.0, 0.0, 0.0],

        ],

        device,

    ),

    directions: Tensor::ones([5, 3], device),

    energies: Tensor::from_floats([1.0, 2.0, 3.0, 4.0, 5.0], device),

};

// Partition into batches of at most 2

let batches = particles.partition_uniform(2);

assert_eq!(batches.num_rotts(), 3); // [2, 2, 1]

assert_eq!(batches.rotts()[0].cardinality(), 2);

assert_eq!(batches.rotts()[1].cardinality(), 2);

assert_eq!(batches.rotts()[2].cardinality(), 1);
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Figure 48: Splitting divides a ROTT into chunks of at most 𝑛 rows. Colors indicate which chunk each row belongs to.

5.2.9 partition_by_labels

Label-based partitioning groups elements by integer labels:

partition_by_labels(𝔸𝑖, ℓ𝑖) = [𝔸𝑖
0, 𝔸𝑖

1, …, 𝔸𝑖
𝑘] (81)

where each 𝔸𝑖
𝑗 contains all elements with label 𝑗.
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partition_by_labels(
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Figure 49: Partitioning by labels groups rows with matching labels into separate ROTTs.

let particles: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [0.0, 0.0, 0.0],

            [1.0, 0.0, 0.0],

            [2.0, 0.0, 0.0],

            [3.0, 0.0, 0.0],

            [4.0, 0.0, 0.0],

        ],

        device,

    ),

    directions: Tensor::ones([5, 3], device),

    energies: Tensor::from_floats([1.0, 2.0, 3.0, 4.0, 5.0], device),

};

// Labels: cell IDs for each particle

let cell_ids: Tensor<B, 1, Int> = Tensor::from_ints([0, 1, 0, 2, 1], device);

// Partition by cell ID

let batches = particles.partition_by_labels(cell_ids);

assert_eq!(batches.num_rotts(), 3); // 3 unique labels

5.3 The Rotts Struct
The Rotts struct provides a collection abstraction over multiple Rotts, enabling iteration over the batches.

A Rotts wraps a vector of ROTTs and provides parallel iterators and batch operations. Domain-specific collections like 

Particles and Events are type aliases for Rotts:

/// A collection of particle batches - type alias for Rotts.

pub type Particles<B> = Rotts<B, ParticleBatch<B>>;

Concretely, one can initialize a Rotts with a vector of Rotts:

let batch_a: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0]], device),

    directions: Tensor::ones([3, 3], device),

    energies: Tensor::from_floats([1.0, 2.0, 3.0], device),
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};

let batch_b: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats([[3.0, 0.0, 0.0], [4.0, 0.0, 0.0]], device),

    directions: Tensor::ones([2, 3], device),

    energies: Tensor::from_floats([4.0, 5.0], device),

};

let batch_c: ParticleBatch<B> = ParticleBatch {

    positions: Tensor::from_floats(

        [

            [5.0, 0.0, 0.0],

            [6.0, 0.0, 0.0],

            [7.0, 0.0, 0.0],

            [8.0, 0.0, 0.0],

        ],

        device,

    ),

    directions: Tensor::ones([4, 3], device),

    energies: Tensor::from_floats([6.0, 7.0, 8.0, 9.0], device),

};

let particles = Rotts::new(vec![batch_a, batch_b, batch_c]);

assert_eq!(particles.num_rotts(), 3); // 3 batches

assert_eq!(particles.cardinality(), 9); // 9 total particles

5.3.1 map

The map method applies a function to each ROTT in parallel, collecting results:

let particles: Particles<B> = Rotts::new(vec![

    ParticleBatch {

        positions: Tensor::from_floats([[0., 0., 0.], [1., 0., 0.], [2., 0., 0.]], device),

        directions: Tensor::ones([3, 3], device),

        energies: Tensor::from_floats([1.0, 2.0, 3.0], device),

    },

    ParticleBatch {

        positions: Tensor::from_floats([[3., 0., 0.], [4., 0., 0.]], device),

        directions: Tensor::ones([2, 3], device),

        energies: Tensor::from_floats([4.0, 5.0], device),

    },

    ParticleBatch {

        positions: Tensor::from_floats(

            [[5., 0., 0.], [6., 0., 0.], [7., 0., 0.], [8., 0., 0.]],

            device,

        ),

        directions: Tensor::ones([4, 3], device),

        energies: Tensor::from_floats([6.0, 7.0, 8.0, 9.0], device),

    },

]);

// Compute total energy per batch (in parallel)

let energies: Vec<f32> =

    particles.map(|batch| batch.energies.clone().sum().into_scalar().elem::<f32>());

// batch_a: 1+2+3=6, batch_b: 4+5=9, batch_c: 6+7+8+9=30

assert_eq!(energies, vec![6.0, 9.0, 30.0]);

5.3.2 filter

The filter method applies a mask-generating function to each ROTT in parallel, selecting elements within each batch:
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let particles: Particles<B> = Rotts::new(vec![

    ParticleBatch {

        positions: Tensor::from_floats([[0., 0., 0.], [1., 0., 0.], [2., 0., 0.]], device),

        directions: Tensor::ones([3, 3], device),

        energies: Tensor::from_floats([1.0, 2.0, 3.0], device),

    },

    ParticleBatch {

        positions: Tensor::from_floats([[3., 0., 0.], [4., 0., 0.]], device),

        directions: Tensor::ones([2, 3], device),

        energies: Tensor::from_floats([4.0, 5.0], device),

    },

    ParticleBatch {

        positions: Tensor::from_floats(

            [[5., 0., 0.], [6., 0., 0.], [7., 0., 0.], [8., 0., 0.]],

            device,

        ),

        directions: Tensor::ones([4, 3], device),

        energies: Tensor::from_floats([6.0, 7.0, 8.0, 9.0], device),

    },

]);

// Filter particles with energy > 1.5 from each batch (in parallel)

let high_energy = particles.filter(|batch| batch.energies.clone().greater_elem(1.5));

// batch_a: [2,3] -> 2, batch_b: [4,5] -> 2, batch_c: [6,7,8,9] -> 4 = 8 total

assert!(high_energy.is_some());

assert_eq!(high_energy.as_ref().unwrap().cardinality(), 8);

let energies: Vec<Vec<f32>> = high_energy

    .as_ref()

    .unwrap()

    .rotts()

    .iter()

    .map(|b| b.energies.to_data().to_vec::<f32>().unwrap())

    .collect();

assert_eq!(

    energies,

    vec![vec![2.0, 3.0], vec![4.0, 5.0], vec![6.0, 7.0, 8.0, 9.0]]

);
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6 Roam: Discrete Stochastic Processes

6.1 Stochastic Processes
A discrete stochastic process, 𝕄(𝑑), is a sequence of states indexed by an integer parameter 𝑑. This is the process depth, 

or the number of steps that have occurred since the initial state, 𝕄(0). The states can be any type: a scalar 𝑚(𝑑), vector 

𝑚𝑖(𝑑), tensor 𝑀 𝑖𝑗(𝑑), or more exotic types like Rott implementers or Rotts collections (see Chapter 5).

These processes can be memory-less, meaning 𝕄(𝑑) depends on 𝕄(𝑑 − 1) and system hyperparameters, only. Such processes 

are called Markov processes. Non-Markov processes may depend on the full history [𝕄(0), 𝕄(1), …, 𝕄(𝑑 − 1)], enabling 

phenomena like reinforcement, lock-in dynamics, or path-dependent behavior.

6.2 The Stepper Trait
The core abstraction in roam.rs is the Stepper trait. Implementers compute new states T from the history of previous states 

&[T], and a handle to an Rng.

pub trait Stepper<T, R: Rng> {

    type Error;

    /// Compute next state from history `[M(0), ..., M(d)]`.

    fn step(&self, history: &[T], rng: &mut R) -> Result<T, Self::Error>;

}

The step method enables the discrete stochasticity: given the full history of the process [𝕄(0), …, 𝕄(𝑑)] and a randomness 

source, produce the next state 𝕄(𝑑 + 1) or signal a terminal condition via the error type.

6.3 Trajectories
The Trajectory struct manages a sequence of states with automatic history:

use rand::SeedableRng;

use rand::rngs::StdRng;

use roam::{Stepper, Trajectory};

struct CountingStepper;

impl<R: Rng> Stepper<usize, R> for CountingStepper {

    type Error = Infallible;

    fn step(&self, history: &[usize], _rng: &mut R) -> Result<usize, Self::Error> {

        Ok(history.len())

    }

}

let mut rng = StdRng::seed_from_u64(42);

let mut traj: Trajectory<usize, StdRng, _> = Trajectory::new(0, CountingStepper);

// Step through the process

traj.step(&mut rng).unwrap();

assert_eq!(traj.depth(), 1);

assert_eq!(*traj.current(), 1);

// Run for a fixed number of steps

traj.run_bounded(10, &mut rng).unwrap();

assert_eq!(traj.depth(), 11);

// Access state history
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assert_eq!(traj.states().len(), 12);

assert_eq!(*traj.state_at(5).unwrap(), 5);

A Trajectory stores all states internally: [𝕄(0), 𝕄(1), …, 𝕄(𝑑)].

6.4 Basic Markov Examples

6.4.1 The Trivial Stepper

The simplest possible Stepper does nothing. It always returns the initial state:

𝕄(𝑑) = 𝕄(0) ∀𝑑 (82)

/// A trivial stepper that always returns the initial state.

///

/// This is the simplest possible stepper: $bb(M)(d) = bb(M)(0)$ for all $d$.

pub struct TrivialStepper;

impl<T: Clone, R: Rng> roam::Stepper<T, R> for TrivialStepper {

    type Error = Infallible;

    fn step(&self, history: &[T], _rng: &mut R) -> Result<T, Self::Error> {

        Ok(history.first().unwrap().clone())

    }

}

fn trivial_stepper_example() {

    let mut rng = StdRng::seed_from_u64(42);

    let mut traj: Trajectory<f64, StdRng, _> = Trajectory::new(1.0, TrivialStepper);

    traj.run_bounded(100, &mut rng).unwrap();

    // All states equal the initial value

    assert!(traj.states().iter().all(|&s| s == 1.0));

}
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Figure 50: Trivial stepper trajectories. All remain constant at 𝕄(0).

6.4.2 A Counting Stepper

A slightly more interesting example: a counting stepper that returns the current depth:

𝕄(𝑑) = 𝑑 (83)

/// A counting stepper that returns the current depth.

///

/// At each step, returns $d$ (the number of steps taken).

pub struct CountingStepper;

impl<R: Rng> roam::Stepper<usize, R> for CountingStepper {

    type Error = Infallible;

    fn step(&self, history: &[usize], _rng: &mut R) -> Result<usize, Self::Error> {

        Ok(history.len())

    }

}

fn counting_stepper_example() {

    let mut rng = StdRng::seed_from_u64(42);

    let mut traj: Trajectory<usize, StdRng, _> = Trajectory::new(0, CountingStepper);

    traj.run_bounded(10, &mut rng).unwrap();

    // States are [0, 1, 2, ..., 10]

    assert_eq!(traj.states(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

}
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Figure 51: Counting stepper: all trajectories follow the same deterministic path 𝕄(𝑑) = 𝑑.

6.4.3 Closure-Based Steppers

For quick prototyping, FnStepper wraps a closure as a stepper:

use rand::SeedableRng;

use rand::rngs::StdRng;

use roam::{Trajectory, stepper};

let step_fn = |history: &[i32], rng: &mut StdRng| {

    let current = *history.last().unwrap();

    Ok::<_, Infallible>(current + rng.random_range(0..=1))

};

let mut rng = StdRng::seed_from_u64(42);

let mut traj = Trajectory::new(0, stepper(step_fn));

traj.run_bounded(10, &mut rng).unwrap();

assert_eq!(traj.depth(), 10);

The stepper() function is a convenience constructor for FnStepper.

6.4.4 Geometric Brownian Motion

As a pedagogical example, consider Geometric Brownian Motion (GBM), a discrete-time stochastic process commonly used 

to model stock prices and other financial quantities. The process evolves according to:

𝑠(0) = 𝑠0

𝑠(𝑑 + 1) = 𝑠(𝑑) ⋅ exp[(𝜇 − 𝜎2

2
)Δ𝑡 + 𝜎

√
Δ𝑡𝑧(𝑑)]

(84)

where 𝑠0 is the initial value, 𝜇 is the drift rate, 𝜎 is the volatility, Δ𝑡 is the time step size, and 𝑧(𝑑) ∼ 𝒩︀(0, 1) is a standard 

normal random variable.
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This is a Markov process; 𝑠(𝑑 + 1) depends only on 𝑠(𝑑) and the random draw 𝑧(𝑑), not on any earlier history.

We define the process as follows:

/// State for geometric Brownian motion.

#[derive(Clone, Debug)]

pub struct GBMState {

    pub value: f64,

    pub time: f64,

}

/// Standard GBM stepper (Markov).

pub struct GBM {

    pub drift: f64,

    pub volatility: f64,

    pub dt: f64,

}

impl<R: Rng> Stepper<GBMState, R> for GBM {

    type Error = &'static str;

    fn step(&self, history: &[GBMState], rng: &mut R) -> Result<GBMState, Self::Error> {

        let state = history.last().unwrap();

        if state.value <= 0.0 {

            return Err("value became non-positive");

        }

        let z = Normal::new(0.0, 1.0).unwrap().sample(rng);

        // S(t+1) = S(t) * exp((μ - σ²/2)Δt + σ√Δt * Z)

        let drift_term = (self.drift - 0.5 * self.volatility.powi(2)) * self.dt;

        let diffusion_term = self.volatility * self.dt.sqrt() * z;

        let new_value = state.value * (drift_term + diffusion_term).exp();

        Ok(GBMState {

            value: new_value,

            time: state.time + self.dt,

        })

    }

}

Simulation is done using the Trajectory API:

use rand::SeedableRng;

use rand::rngs::StdRng;

use roam::Trajectory;

let mut rng = StdRng::seed_from_u64(42);

let gbm = GBM {

    drift: 0.05,

    volatility: 0.2,

    dt: 1.0 / 252.0, // Daily steps

};

let mut traj: Trajectory<GBMState, StdRng, _> = Trajectory::new(

    GBMState {

        value: 100.0,
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        time: 0.0,

    },

    gbm,

);

// Simulate one trading year (252 days)

traj.run_bounded(252, &mut rng).unwrap();

assert_eq!(traj.depth(), 252);

assert!(traj.current().value > 0.0);

Figure 52: GBM trajectories with varying volatility 𝜎. As volatility increases, the spread of possible outcomes widens 
dramatically. Each panel shows 500 traces with mean (dark line) and ±1𝜎 band (shaded).

6.5 Basic Non-Markov Examples

6.5.1 Pólya Urn Model

The Pólya urn is a classic model demonstrating rich-get-richer dynamics. An urn starts with one red and one blue ball. At 

each step:

1. Draw a ball uniformly at random

2. Return it along with one additional ball of the same color

The fraction of red balls converges to a limit, but that limit depends entirely on the random trajectory; different runs lock 

into different attractors, depending on their early behavior.
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Below we define the internal state of the urn:

/// State for the Pólya urn model.

#[derive(Clone, Debug)]

pub struct UrnState {

    pub red: u32,

    pub blue: u32,

}

impl UrnState {

    pub fn new(red: u32, blue: u32) -> Self {

        Self { red, blue }

    }

    pub fn fraction_red(&self) -> f64 {

        self.red as f64 / (self.red + self.blue) as f64

    }

}

Using this, we implement Stepper:

/// Pólya urn stepper (non-Markov).

///

/// Draw a ball proportional to counts, return it with one more of the same color.

pub struct PolyaUrn;

impl<R: Rng> Stepper<UrnState, R> for PolyaUrn {

    type Error = Infallible;

    fn step(&self, history: &[UrnState], rng: &mut R) -> Result<UrnState, Self::Error> {

        let state = history.last().unwrap();

        let total = state.red + state.blue;

        // Draw proportional to current counts

        if rng.random_ratio(state.red, total) {

            Ok(UrnState {

                red: state.red + 1,

                blue: state.blue,

            })

        } else {

            Ok(UrnState {

                red: state.red,

                blue: state.blue + 1,

            })

        }

    }

}

Finally, we can sample random trajectories through this space as follows:

let mut rng = StdRng::seed_from_u64(42);

let mut traj: Trajectory<UrnState, StdRng, _> = Trajectory::new(

    UrnState::new(1, 1), // Start with 1 red, 1 blue

    PolyaUrn,

);

traj.run_bounded(10, &mut rng).unwrap();

Extending into deeper depths, we see the convergent behavior emerge:
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let mut rng = StdRng::seed_from_u64(42);

let mut traj: Trajectory<UrnState, StdRng, _> = Trajectory::new(

    UrnState::new(1, 1), // Start with 1 red, 1 blue

    PolyaUrn,

);

traj.run_bounded(100, &mut rng).unwrap();

// Fraction converges to some limit (path-dependent!)

let final_fraction = traj.current().fraction_red();

assert!(final_fraction > 0.0 && final_fraction < 1.0);

𝑑
max

= 10 𝑑
max

= 100

Figure 53: 500 Pólya urn trajectories showing fraction of red balls over time. Left: in early depths, samples greatly inflnence 
long-term behavior. Right: trajectories converge to common attractors. Notice that the mean remains 0.5 and the variance 

stabilizes.

6.6 Tensor States: The Ising Model
The Ising model demonstrates how roam.rs handles tensor-valued states using Burn Tensors as states. In the Ising model, a 

2D lattice of spins evolves via Metropolis dynamics. The lattice is defined as:

𝑆𝑥𝑦 = {−1, +1}∀(𝑥, 𝑦) (85)

Each location in the lattice is spin up or spin down. Each lattice location randomly updates according to the spins of its 

neighbors.

6.6.1 Standard Ising Model (Markov)

The energy of a standard Ising model configuration is:

𝐸 = −𝐽 ∑
⟨𝑖,𝑗⟩

𝑠𝑖𝑠𝑗 (86)

where the sum runs over nearest-neighbor pairs and 𝐽  is the coupling constant. The Metropolis algorithm proposes spin flips 

and accepts them with probability:

𝑃(accept) = min(1, exp(−Δ𝐸/𝑇)) (87)

The state of the Ising model is implemented as below:
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/// State for 2D Ising spin lattice using burn tensors.

///

/// Spins are stored as a 2D tensor with values +1 or -1 (as floats for GPU ops).

#[derive(Clone)]

pub struct SpinLattice<B: Backend> {

    pub spins: Tensor<B, 2>,

    pub size: usize,

}

impl<B: Backend> SpinLattice<B> {

    /// Create a new lattice with random spins.

    pub fn random(size: usize, device: &B::Device) -> Self {

        // Generate random values in [0, 1), convert to ±1

        let random = Tensor::<B, 2>::random(

            [size, size],

            burn::tensor::Distribution::Uniform(0.0, 1.0),

            device,

        );

        let threshold = Tensor::<B, 2>::full([size, size], 0.5, device);

        let mask = random.lower(threshold);

        let ones = Tensor::<B, 2>::ones([size, size], device);

        let neg_ones = ones.clone().neg();

        let spins = mask.clone().float() * neg_ones + mask.bool_not().float() * ones;

        Self { spins, size }

    }

    /// Create a lattice with all spins up.

    pub fn all_up(size: usize, device: &B::Device) -> Self {

        let spins = Tensor::<B, 2>::ones([size, size], device);

        Self { spins, size }

    }

    /// Compute total magnetization.

    pub fn magnetization(&self) -> f32 {

        self.spins.clone().sum().into_scalar().elem()

    }

    /// Compute magnetization per spin.

    pub fn magnetization_per_spin(&self) -> f64 {

        self.magnetization() as f64 / (self.size * self.size) as f64

    }

    /// Convert to Vec<Vec<i8>> for visualization.

    pub fn to_vec(&self) -> Vec<Vec<i8>> {

        let data = self.spins.clone().into_data();

        let flat: Vec<f32> = data.to_vec().unwrap();

        flat.chunks(self.size)

            .map(|row| {

                row.iter()

                    .map(|&v| if v > 0.0 { 1i8 } else { -1i8 })

                    .collect()

            })

            .collect()

    }

    /// Get the device this lattice is on.

    pub fn device(&self) -> B::Device {

        self.spins.device()

    }

}
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The Stepper uses conv2d for efficient neighbor sum computation and checkerboard updates to avoid updating neighbors 

inconsitently across the lattice:

/// Standard Ising model stepper using burn tensors (Markov).

///

/// Uses parallel Metropolis updates on the full lattice each step.

/// Neighbor sums computed via conv2d for GPU efficiency.

pub struct IsingModel<B: Backend> {

    pub temperature: f64,

    pub coupling: f64,

    _phantom: PhantomData<B>,

}

impl<B: Backend> IsingModel<B> {

    pub fn new(temperature: f64, coupling: f64) -> Self {

        Self {

            temperature,

            coupling,

            _phantom: PhantomData,

        }

    }

    /// Compute sum of four neighbors using conv2d with a cross kernel.

    /// The kernel [[0,1,0], [1,0,1], [0,1,0]] sums the 4 neighbors.

    pub fn neighbor_sum(spins: &Tensor<B, 2>, device: &B::Device) -> Tensor<B, 2> {

        use burn::tensor::module::conv2d;

        use burn::tensor::ops::ConvOptions;

        let [rows, cols] = spins.dims();

        // Cross kernel: sums up, down, left, right neighbors

        let kernel_data: [f32; 9] = [0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0];

        // [out_channels, in_channels, h, w]

        let kernel = Tensor::<B, 1>::from_floats(kernel_data, device).reshape([1, 1, 3, 3]);

        // Use circular padding by manually wrapping edges

        let top = spins.clone().narrow(0, rows - 1, 1);

        let bottom = spins.clone().narrow(0, 0, 1);

        let padded_v = Tensor::cat(vec![top, spins.clone(), bottom], 0);

        let left = padded_v.clone().narrow(1, cols - 1, 1);

        let right = padded_v.clone().narrow(1, 0, 1);

        let padded = Tensor::cat(vec![left, padded_v, right], 1);

        let padded_4d = padded.reshape([1, 1, rows + 2, cols + 2]);

        // Conv2d with no padding (we already padded manually for circular boundaries)

        let options = ConvOptions::new([1, 1], [0, 0], [1, 1], 1);

        let result = conv2d(padded_4d, kernel, None, options);

        result.reshape([rows, cols])

    }

    /// Generate random tensor from external RNG for reproducibility.

    pub fn random_tensor<R: Rng>(size: usize, rng: &mut R, device: &B::Device) -> Tensor<B, 2> {

        let data: Vec<f32> = (0..size * size).map(|_| rng.random::<f32>()).collect();

        Tensor::<B, 1>::from_floats(&data[..], device).reshape([size, size])

    }

    /// Create a checkerboard mask for the given parity.

    pub fn checkerboard_mask(size: usize, parity: bool, device: &B::Device) -> Tensor<B, 2> {

        let mut data = vec![0.0f32; size * size];
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        for i in 0..size {

            for j in 0..size {

                if ((i + j) % 2 == 0) == parity {

                    data[i * size + j] = 1.0;

                }

            }

        }

        Tensor::<B, 1>::from_floats(&data[..], device).reshape([size, size])

    }

}

The Stepper implementation performs the Metropolis updates:

impl<B: Backend, R: Rng> Stepper<SpinLattice<B>, R> for IsingModel<B> {

    type Error = Infallible;

    fn step(&self, history: &[SpinLattice<B>], rng: &mut R) -> Result<SpinLattice<B>, Self::Error> {

        let state = history.last().unwrap();

        let device = state.device();

        let mut spins = state.spins.clone();

        // Checkerboard decomposition: update black squares, then white squares

        // This ensures correct parallel Metropolis (neighbors don't change during update)

        for parity in [true, false] {

            // Compute neighbor sums

            let neighbors = Self::neighbor_sum(&spins, &device);

            // Energy change if we flip: ΔE = 2 * J * s_i * Σ neighbors

            let delta_e = spins

                .clone()

                .mul_scalar(2.0 * self.coupling as f32)

                .mul(neighbors);

            // Acceptance probability: min(1, exp(-ΔE/T))

            let neg_delta_e_over_t = delta_e.neg().div_scalar(self.temperature as f32);

            let accept_prob = neg_delta_e_over_t.exp().clamp_max(1.0);

            // Generate random numbers

            let random = Self::random_tensor(state.size, rng, &device);

            // Accept where random < accept_prob

            let accept_mask = random.lower(accept_prob);

            // Apply checkerboard mask (only update one color)

            let checker = Self::checkerboard_mask(state.size, parity, &device);

            let update_mask = accept_mask.float().mul(checker).bool();

            // Flip accepted spins

            let flipped = spins.clone().neg();

            spins = update_mask.clone().float() * flipped + update_mask.bool_not().float() * spins;

        }

        Ok(SpinLattice {

            spins,

            size: state.size,

        })

    }

}
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𝑇 = 1.0 𝑇 = 2.27 𝑇 = 4.0

Figure 54: Ising model at different temperatures. Left: ordered phase with large coherent domains. Center: critical point with 
fractal structure. Right: disordered phase with random spins.

6.6.2 Magnetic Memory Ising (Non-Markov)

To demonstrate non-Markov dynamics with tensor states, we extend the Ising model with magnetic memory. The flip 

acceptance probability is biased by the historical average magnetization:

𝑃(accept) = min(1, exp(−(Δ𝐸 − 𝑤𝑀𝑠′)/𝑇)) (88)

where 𝑀  is the average magnetization over recent history and 𝑤 is the memory weight. This creates “momentum” in the 

magnetization dynamics; the system resists flipping away from its historical trend.

/// Ising model with magnetic memory using burn tensors (non-Markov).

///

/// Flip acceptance depends on historical magnetization, creating "momentum".

/// Spins that align with the historical magnetization trend are favored.

pub struct MagneticMemoryIsing<B: Backend> {

    pub temperature: f64,

    pub coupling: f64,

    pub memory_weight: f64,

    _phantom: PhantomData<B>,

}

impl<B: Backend> MagneticMemoryIsing<B> {

    pub fn new(temperature: f64, coupling: f64, memory_weight: f64) -> Self {

        Self {

            temperature,

            coupling,

            memory_weight,

            _phantom: PhantomData,

        }

    }

}

The Stepper implementation biases acceptance by historical magnetization:

impl<B: Backend, R: Rng> Stepper<SpinLattice<B>, R> for MagneticMemoryIsing<B> {

    type Error = Infallible;

    fn step(&self, history: &[SpinLattice<B>], rng: &mut R) -> Result<SpinLattice<B>, Self::Error> {

        let state = history.last().unwrap();
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        let device = state.device();

        let mut spins = state.spins.clone();

        // Compute historical average magnetization (last 10 states or all if fewer)

        let window_start = history.len().saturating_sub(10);

        let avg_mag: f64 = history[window_start..]

            .iter()

            .map(|s| s.magnetization_per_spin())

            .sum::<f64>()

            / (history.len() - window_start) as f64;

        // Checkerboard decomposition for correct parallel Metropolis

        for parity in [true, false] {

            // Compute neighbor sums

            let neighbors = IsingModel::<B>::neighbor_sum(&spins, &device);

            // Energy change if we flip: ΔE = 2 * J * s_i * Σ neighbors

            let delta_e = spins

                .clone()

                .mul_scalar(2.0 * self.coupling as f32)

                .mul(neighbors);

            // Proposed spins (flipped)

            let proposed = spins.clone().neg();

            // Memory bias: favor flips that align with historical magnetization trend

            let memory_bias = proposed

                .clone()

                .mul_scalar(self.memory_weight as f32 * avg_mag as f32);

            // Effective energy change

            let effective_delta_e = delta_e.sub(memory_bias);

            // Acceptance probability: min(1, exp(-ΔE_eff/T))

            let neg_delta_e_over_t = effective_delta_e.neg().div_scalar(self.temperature as f32);

            let accept_prob = neg_delta_e_over_t.exp().clamp_max(1.0);

            // Generate random numbers

            let random = IsingModel::<B>::random_tensor(state.size, rng, &device);

            // Accept where random < accept_prob

            let accept_mask = random.lower(accept_prob);

            // Apply checkerboard mask

            let checker = IsingModel::<B>::checkerboard_mask(state.size, parity, &device);

            let update_mask = accept_mask.float().mul(checker).bool();

            // Flip accepted spins

            spins = update_mask.clone().float() * proposed + update_mask.bool_not().float() * spins;

        }

        Ok(SpinLattice {

            spins,

            size: state.size,

        })

    }

}
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𝑤 = 0.0 𝑤 = 0.5 𝑤 = 1.0

Figure 55: Magnetic memory Ising at 𝑇 = 2.5 with varying memory weight 𝑤. Left: no memory (standard Ising). Center/
Right: increasing memory strength creates more coherent domain structures as the system develops “momentum” in its 

magnetization.

6.7 Error-Based Termination
Steppers can signal terminal conditions by returning an error. The run() method continues until an error is returned:

struct TerminatingStepper { max_depth: usize }

impl<R: Rng> Stepper<usize, R> for TerminatingStepper {

    type Error = &'static str;

    fn step(&self, history: &[usize], _rng: &mut R) -> Result<usize, Self::Error> {

        if history.len() >= self.max_depth {

            Err("max depth reached")

        } else {

            Ok(history.len())

        }

    }

}

// Usage

let mut traj = Trajectory::new(0, TerminatingStepper { max_depth: 100 });

let result = traj.run(&mut rng);

assert!(result.is_err());

assert_eq!(traj.depth(), 99);

This pattern is useful for:

• Absorbing states (particle absorbed, process terminates)

• Boundary conditions (value exceeds threshold)

• Convergence criteria (change falls below tolerance)

7 Phlux Viewer
The Phlux Viewer is a GPU-accelerated visualization application for exploring particle transport simulation results stored 

in .phlux archives.

7.1 Loading .phlux Files
Archives are loaded through the phlux API:
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.phlux Session
::load() SessionData

ConvertedData
Vec<GpuEvent>

wgpu::Buffer
GPU vertex data

TransportData
EventFrame, ParticleFrame

Observables
measure()

GPU rendering queries

Figure 56: Loading pipeline: .phlux → Session → SessionData → TransportData → observables.

Session::load() extracts the archive to a temp directory, reads the manifest, and loads Parquet data into Polars DataFrames. 

SessionData provides access to transport data by ID. TransportData exposes EventFrame and ParticleFrame for querying, 

and the measure() method for computing observables.

7.2 User Interface
The viewer displays a 3D scene with a sidebar of interactive charts:

SceneRenderer
3D viewport

k-eff, counts

Time

Energy

Depth

Convergence

Figure 57: UI layout: 3D viewport with histogram sidebar. Each HistogramChart has a RangeSelection overlay for filtering.

3D Viewport — SceneRenderer renders particle tracks and collision events. Filtering happens in WGSL shaders via 

GpuFilterSettings uniforms.

Histogram Charts — Three HistogramChart widgets display time, energy, and depth distributions. Each chart has a 

RangeSelection overlay that users drag to define filter bounds.

HistogramChart

unfiltered

filtered

drag handles

Figure 58: Dual-histogram rendering: background shows full distribution, foreground shows events passing all cross-filters. 
Foreground bars are shorter due to filtering from other histograms.

Each histogram renders two layers: a light background showing the full distribution, and a colored foreground showing events 

passing all active filters. Because filters cross-apply, the foreground bars may be shorter than the background even within 

the selection bounds—events excluded by other histograms (e.g., energy filter) reduce counts in this histogram (e.g., time). 

This dual-layer approach lets users see both the overall data shape and the effect of their combined filter selections.

Convergence Chart — ConvergenceChart displays k-effective and Shannon entropy versus collision depth.
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7.3 Filter Bifurcation
ViewerFilter is the single source of truth for filter state. It bifurcates to two consumers:

ViewerFilter

impl FilterEvents
impl FilterParticles

sync_to_gpu()

every frame

commit_filter()

on release

GpuFilterSettings

WGSL uniform buffer
→ SceneRenderer

QueryManager

EventFrame.filter()
ParticleFrame.filter()

3D Scene

shader-side filtering

Histogram

recomputed distributions

Figure 59: Filter bifurcation: ViewerFilter feeds both GPU rendering (immediate) and backend queries (debounced).

GPU Path — sync_to_gpu() converts ViewerFilter to GpuFilterSettings and uploads to the uniform buffer every frame 

during drag. WGSL shaders discard fragments outside filter bounds for immediate visual feedback.

Backend Path — commit_filter() triggers QueryManager to recompute histograms on selection release. The query 

applies ViewerFilter via EventFrame.filter() and ParticleFrame.filter() (Polars lazy expressions), then bins results into 

Histogram distributions.
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8 Appendix

8.1 Citation
When using phlux.rs in academic work, please cite:

@software{phlux.rs,

  title={phlux.rs: Monte Carlo N-Particle Transport Framework},

  author={Huibregtse, Clyde},

  year={2026},

  url={https://gitlab.com/soho-labs/phlux.rs}

}

8.2 Contributing

8.2.1 Quick Start

Install developer tools:

cargo install --path phlux-tools

8.2.2 Commit Message Format

We use Conventional Commits with the format:

type(scope): description

8.2.2.1 Examples

feat(phlux): add particle tracking system

fix(crater): resolve memory leak in mesh generation

docs(xs): update API documentation

perf(phlux): optimize particle tracking loop

refactor(workspace): consolidate shared dependencies

8.2.3 Development Workflow

Before committing:

# Format code

cargo fmt --all

# Run linting

cargo clippy --workspace --all-targets -- -D warnings

# Validate a commit message

echo "feat(phlux): add new feature" | phlux-tools commit-check --stdin

8.2.4 Getting Help

• View phlux-tools commands: phlux-tools --help

• View commit schema: phlux-tools commit-schema --show

• Report issues: https://gitlab.com/soho-labs/phlux.rs/-/issues

82

https://gitlab.com/soho-labs/phlux.rs/-/issues

	1 Foreword
	1.1 Workspace Breakdown
	1.2 Quick Links
	1.2.1 Demos
	1.2.2 Resources

	1.3 Notation
	1.3.1 General Tensor Notation


	2 Phlux: Transport Theory
	2.1 Transport as a Stochastic Process
	2.1.1 Particles and Events: Structures-of-Arrays

	2.2 The Transport Operator
	2.2.1 Cell Identification
	2.2.2 Homogenization
	2.2.3 Batched Particle Casting
	2.2.4 Progeny Sampling

	2.3 The Storage Backend
	2.3.1 Data Flow
	2.3.2 TableStorage
	2.3.3 GraphStorage

	2.4 Observables
	2.4.1 The Observable Integral
	2.4.1.1 Tensor-Valued Response Functions

	2.4.2 The Observable Pipeline
	2.4.3 Measurements
	2.4.4 Filters
	2.4.5 Response Functions
	2.4.6 The Frame API
	2.4.6.1 EventFrame
	2.4.6.2 ParticleFrame

	2.4.7 Canonical Observables
	2.4.7.1 Count (Scalar)
	2.4.7.2 K-Effective (Scalar Ratio)
	2.4.7.3 Cell Flux (Vector)
	2.4.7.4 Energy Spectrum (Histogram)
	2.4.7.5 Spatial Flux (SpatialMesh)


	2.5 Transport as a Genealogy
	2.5.1 A Genealogical View on Criticality


	3 Crater: Constructive Solid Geometry
	3.1 Scalar Fields
	3.1.1 Batch Evaluation

	3.2 Regions
	3.2.1 Constructive Solid Geometry
	3.2.1.1 Algebras
	3.2.1.1.0.1 Differentiable Algebras
	3.2.1.1.0.2 Blending


	3.2.2 Primitives

	3.3 Transformations
	3.3.1 Translation
	3.3.2 Scaling
	3.3.3 Rotation
	3.3.4 Non-standard Transformations

	3.4 Ray Casting
	3.4.1 Analytical Method
	3.4.1.1 Hyperplanes
	3.4.1.2 Hyperspheres
	3.4.1.3 Hypercones
	3.4.1.4 Hypercylinders
	3.4.1.5 Composite CSG Regions

	3.4.2 Bracket and Bisect Algorithm
	3.4.2.1 Ray Bracketing
	3.4.2.2 Ray Bisection

	3.4.3 Newton's Method

	3.5 Analysis Modules
	3.5.1 Volume Estimation (Monte Carlo)
	3.5.1.1 Error Analysis

	3.5.2 Gradient Computation
	3.5.2.1 Surface Normals

	3.5.3 Gradient Descent
	3.5.4 Root Finding (Newton's Method)
	3.5.5 Adaptive Bounding
	3.5.5.1 Cell Classification
	3.5.5.2 Subdivision Scheme
	3.5.5.3 Algorithm


	3.6 Mesh Extraction
	3.6.1 Simplicial Complexes
	3.6.2 The Marching Algorithm
	3.6.3 Hypercube Classification
	3.6.4 Edge Interpolation
	3.6.5 Resolution
	3.6.6 Algorithms
	3.6.6.1 Tensor-Native Implementation
	3.6.6.1.1 2D: Using conv2d
	3.6.6.1.2 3D: Using conv3d



	3.7 Rescaling Transformations
	3.7.1 Function Classes
	3.7.2 Properties of Rescaling
	3.7.3 Rescaling for Ray Cast Stability


	4 XS: Nuclear Cross Section Service
	5 Rott: Row-Oriented Tensor Types
	5.1 Row-Oriented Tensor Type (ROTT)
	5.2 Operations on ROTTs
	5.2.1 Predicate Notation
	5.2.2 select
	5.2.3 mask_where
	5.2.4 slice
	5.2.5 reorder
	5.2.6 concat
	5.2.7 concat_bounded
	5.2.8 partition_uniform
	5.2.9 partition_by_labels

	5.3 The Rotts Struct
	5.3.1 map
	5.3.2 filter


	6 Roam: Discrete Stochastic Processes
	6.1 Stochastic Processes
	6.2 The Stepper Trait
	6.3 Trajectories
	6.4 Basic Markov Examples
	6.4.1 The Trivial Stepper
	6.4.2 A Counting Stepper
	6.4.3 Closure-Based Steppers
	6.4.4 Geometric Brownian Motion

	6.5 Basic Non-Markov Examples
	6.5.1 Pólya Urn Model

	6.6 Tensor States: The Ising Model
	6.6.1 Standard Ising Model (Markov)
	6.6.2 Magnetic Memory Ising (Non-Markov)

	6.7 Error-Based Termination

	7 Phlux Viewer
	7.1 Loading .phlux Files
	7.2 User Interface
	7.3 Filter Bifurcation

	8 Appendix
	8.1 Citation
	8.2 Contributing
	8.2.1 Quick Start
	8.2.2 Commit Message Format
	8.2.2.1 Examples

	8.2.3 Development Workflow
	8.2.4 Getting Help



